AD~4205 181

AFGL-TR-88-0303

4

UMG_EILE_Copy

MODEL DESCRIZTION FOR THE 5SOCRATES CONTAMINATION CODE

Jame. B. Elgin and Robert L. Sundberg

Spectral Sciences, Inc.
1'% South Bedford Street
B:..~lington, MA 01843

-

DTiC
5% CLECTE R
“3 FEB15 1983
21 Ucrober 1438 ey ?
D )

Fine  Report
‘23 S ptember 1985 - 23 September 1988

Apprcved for public release; distribution unlimited

AIR FORCE GEOPHYSI: 3 LABORATORY

AIR FORCE SYSTEMS : OMMAND

UNITLED STATES AIR OKRCE

HANSCOM AFB, MASSACHUSE™TS 01731-500

ROt &

R

fod

i

A

Pl

-,
» ¥

"
S

AN



s “HK"',_ et -
TETIRTEASEEFATION OF TRIS PAGE

REPORT DOCUMENTATION PAGE
g ol LElu~ 7Y CLASSIFICATION 1b. RESTRICTIVE MARKINGS
_ : NON:
L OSECLR T Y CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY QF REPORT
PR )
S e aSs CAT ON | DOWNGRAGING SCHEDULE Approved for public releasc;
o distribution unlimited
3 PLRFOKMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
SOl N AFGL-TR-88- 0303
68 NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicabie)
Spectral Scicences, Inc. N/A Air Force Geophysics lLaborvatory
6c. ADORESS (C'ty, State, and ZiP Code) 7b. ADDRESS (City, State, and 2IP Code)
111 South Bedford Strect Hanscom Air Force Base
Burlington, MA 01803-5128 Bedford, MA 01731-5000
8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicable)
Electronic Svstems Division N/A F19628-85-C-0195
8¢c. ADORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Air Force Systems Command, USAF PROGRAM PROJECT TASK WORK UNIT
Hanscom AFB, MA 01731 © ELEMENT NO. NO. NO. ACCESSION NO
62101F 7661 1] Al
11. TITLE (Include Security Classification)
Model Description for the SOCRATES Contamination Code
12 PERSONAL AUTHOR(S)
James 8. Elgin and Robert L. Sundberg
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 5. PAGE COUNT
Final Report FROM 85SEP23 TO88SE 21 October 1988 128
16. SUPPLEMENTARY NOTATION
17 COSAT! CODES . 18. SUBJEO\Y;AMS (Continue on reverse if necessary and identify by block number)
4 . L
FELO GROU SUB-GROUP Contamination - Monte Carlo Space Shuttle . [r-—1..
\L ‘ Rarefied Flows ‘ ﬁ}
19 ABSTRACT (Con«:f on raverse if necessary and identify by block number)
N
Tne SOCRATES contamination model is describeda at length. The moag.l
aliows tor unstcaay or Steady simulation ot contamination aboard the space
snmuttle orbiter via the direct simulation Monte Cario method. The bas:s
tor tne rodel 1s dilscussed, andg sample calculations are given for an RCS
engrine frring gt 200, 250, ana 300 kilometer attitudes. The depencence of
rerurn Flux ol scaltterea specles on exhaust species molecuiar weignt s
erle T dateaq.
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
ClunclassipeounumiTED 0 same As RPT. ] oTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (inciude Ares Code) | 22¢. OFFICE SYMBOL
Dr. Shu Lai (617) 377-2933 AEGLLPHK
OD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. FICAT £ THIS PA

All other aditions are obsolate.
UNCLASSIFILED




oo

CONTENTS

OVERVIEW OF THE SOCRATES CODE

GAS MODEL AND EQUILIBRIUM PROPERTIES

2.1 Preliminary Equilibrium Gas Relations

2.2 Analytical Form ot the Collision Cross Sectlon

2.3 Fquilibrium Reterence Properties for a Multi-
Component Gas .

2.4 Internai Energy Mouel

INTERNAL REPRESENTAT1ON

3.1 State Vector e e e e e e e e

3.2 Reauction to a Reasonable Number of Simutuated
Molccutes

3.3 Internal Scales
.4 Welgncingr Factlors

GRID COORDINATES AND GRID STRUCTURE

COLLISION MECHANICS .
.1 Relatlons four Elastic Lolllslons

5

5.2 FEffect of toordinate System .

3.3 Sirulation of [nelastic Collisions

5.4 Collisions Between Molecules with Dlstlnct

Welighting Factors

Reactive Collisions .

5.5.1 Types of Reactive Co]llSlons

5.5.2 Reactive Collision Probability

5.5.3 Options for Simulating Reactive
Coilisions

[$]]
19/

COLLISION SAMPLING IN A MULTI-COMPONENT VHS GAS

6.1 General Considerations and Approach .o

6.2 Collision Sampling for a Single Component Gas

6.2.1 Collision Pair Selection .

6.2.2 Cotlision Time Counter tor a Slngle
Component Gas

Collision Class Sampiing in Gas Mlxtures

Gioba: Collision Sampling in a Gas Mixture

6.4.1 Giobal Collision Time Counter

6.4.2 Cotlision Pair Selection in Multi-

o o
W

Component Mixtures

11
11

11
12
13

14

16
16
18
19

21
21
22
23

24

26
26
27
27

28
29
30
30

32




8

10

11

6.4.3 Summary of Collision Sampling in Multi-
Component Mixtures .
6.5 Deviations from the Gencral Procedure
6.5.1 Cell Specitic At

6.5.2 Relaxation of Quax
6.5.3 Maximum Time Counter
6.5.4 Separation of Major ana Mlnor bpe01es

PROCEDURES FOR COLLISION DOMINATED FLOW
7.1 Collision Cutott Approach
7.2 Equilibrium Attermath Approach
7.2.1 Conserved Quantities
7.2.2 Center-or-Mass Velocity Dlstrlbutlon
7.2.3 Molecular Relative Velocity
Distribution
7.2.4 Translational Fnervy ot Relatlve Motlon
7.2.5 Determination of Temperature .
7.3 The Number of Collisions Requlrea to Auhleve
Equilibrium .
7.4 Methad Comparison

MOLECULAR TRANSLATIONS .

8.1 Molecuiar Translations in Cdrteslan
Coordinates

8.2 Moiecular Cloning

IN{TIAL AND BOUNDARY CONDITIONS

9.1 1Initial Conditions
9.1.1 Number of blmulqted Molecules dnd Thelr

Weighting Factors

9.1.2 Initial Positians
9.1.3 Initia) Velocity Components
9.1.4 Initia! Internal Energies

9.2 Source Boundary Conditions

9.3 Atmospheric Boundary Conaition . e
9.3.1 Moiecular Flux Across a Surtdcv Element
9.3.2 Incoming Molecular Velocity Components

STATISTICAL SAMPLING OF OUTPUT

10.1 General Considerations .

10.2 Sampling of Instantaneous Volumetrxc Qutput
Quantities . .

10.3 Sampiing of Time Averaged Output Quant1t1eg

SURFACE DEFINITIONS AND INTERACTIONS
11.1 Shuttie Representation

iv

32
33
33
34
34
35

36
36
37
38
39

41

41
42

43
44

44

44
45

47
47

a7
48
48
49
49
51
51
52

57
58




11.2 Determination of Surtace Intersections . . . . 62
11.3 Surface Reflections . . . . . . . . . . . . . . 66
11.4 Surface Statistics . . . . . . . . . <« . . . . 066
11.5 Interfdace of Shuttle Model with Calculationai
Grid . . . . . . . . . . . . . . . . . . . . . ©bb

il1.6 Back-to-Back Surtdaces . . . . . . . . . . . . . &7
SAMPLE CALCULATIONS . . . . . . . . . . . . . . . . . 17
12.1 Case Descriptions . . . . . . . . . . . . . . . 67
12.2 Concamination Cloud Results at 200 Kilometers . 70
12.3 Surface Contamination at 200 Kilometers . . . . 86
12.4 KResulits at 250 ana 300 Kilometers . . . . . . . 91
CONCLUSIONS . . . . . . . . . . . . o . o oo,y
REFERENCES . . . . . . o . ..o oo e o s e 9
APPENDIX A . . . . . . oo s e s e e e e s s A

li:cesion For

s

NTIS CRA&J

DTIC T1AB
Unannounced 0
Justitication

By

Dusiribution[

Availability Codes

Avail and/or

Dist Special

A-l




3

6

8

12

ILLUSTRATIONS

A Schematic Representacion ot the Major Elements of
Shuttie Contaminacion Problem

A Dragram o! the Basic Soiution Proceaure Ut:iltzeud
for Steaay State Solutions in the SUCRATES
Contaminat:vn Moace!

A Schematic Showing ihe Basic Design of the Socrates
Cell Structure Which Uses Cartesian Cooradinates with
Uneven Spacing

A Frontal View ot the Crude Shuttle Model Designed
for Testing of the SOCRATES Moael

A Top View of the Cruade Shuttle Model Desipgned for
Testing of the SOCRATES Mocoel

A Side View of the Crude Shuttle Model Designea for
Testing of the SOCRATES Model

An [llustration ot the Quantities Usea to Caiculiate
4 Molecular Intersection with a Rectangular Plate

A Schematic of the Sample Shuttle Problem Showing
the Coordtnate System and OQrientdation ol the
Catculation

A Contour Plot of tne Scatterea Hz Number Density

atl an X Location or 0 Meters For the 200 Kilometer
Case

A Coutour Plot ot the Scattereu H2 Number Density

at an X Location of 500 Meters For the 200 Kilometer

Case

A Contour Piol ol the Scattered H2 Number Density

at an X Location of 1500 Meters For the 200 Kilometer

Case
A Contour Plot of the Scattercd Hz Number Density

at a Zz Location of 1000 Meters For the 200 Kilometer
Case

vi

60

63

6y

73

74

75




[&]]

6

]

20

22

A Contour Plot of the Scattered C02 Number Density
4L a4 Z Lucation ot 100U Meters For tnhe 200 Kilometer
rasce

The Upstream Density Decay for the Three Species at
a4 Z Location ot 1 Kilometer Above the Shuttle for
the 200 Kilometer Case

A Contour Plot of the Z Velocity Component for the
Scatterea Hy, at an X Location ot 0 Meters For the
200 Kilometer Case

A Contour Plot ot the Transiational Temperature for
the Scattered H2 at an X Location of 0 Meters For
the 200 Kilometer Case

A Contour Plot ot the Z Velocity Component for the
Scatterea CO, at an X Location ot O Meters For the
200 Kiriometer Case

A Contour Plot of the Translational Temperature tor
tne Scattered 002 at an X Location ol 0 Meters For
the 200 Kilometer Case

The Eftect ot Exhaust Species Molecular Weight on
the Normalized Scattered Species Density in the
Vicinity ot the Shuttle

The Effect of Exhaust Species Molecular Weight on
the Scattered Species Z Velocity Component in the
Vicinity of the Shuttle

The Etfect ot Exhaust Species Molecular Weight on
the Scdatterea Species Transltational Tempcerature in
tne Vicinity ot the Shuttle

The Return Flux of Scattered Hy, in the Y-Z Plane
as a Function of Azimuthal Angle, in the Vicinity
ot the Shuttle, for the 200 Km Case

The Return Flux of Scattered Hy0 in the Y-Z Plane

as a Function of Azimuthal Angle, in the Vicinity
ot the Shuttle, tor the 200 Km Casc

vii

76

77

78

79

81

82

83

84

85

88

89




24

26

27

24

30

31

A-3

The Return Flux ot Scattered COy in the Y-Z Plane
a4s 4 Function of Azimuthal Angle, in the Vicinity
of the Shuttle, for the 200 Km (Case

The Return Flux of Scattered H2 in the Y-Z Plane
as a Function ot Azimuthal Angle, in the Vicinity
of the Shuttle, for the 250 Km Case

The Return Flux of Scattered H,0 in the Y-Z Plane
as & function of Azimuthal) Angle, in the Vicinity
of the Shuttle, for the 250 Km Case

The Return Flux of Scatterea 002 in the Y-Z Plane
d4s a Function of Azimuthal Angle, in the Vicinity
of the Shuttle, tor the 250 Km Case

The Return Flux or Scattered H2 in the Y-Z Piane
as 4 Function of Azimuthal Angle, in the Vicinity
o the Shuttle, tor the 300 Km Case

The Return Fiux of Scattered H20 in the Y-Z Plane
as 4 Funcrion of Azimuthal Angle, in the Vicinity
of the Shuttle, tor the 300 Km Case

The Return Fiux of Scattered CO, in the Y-Z Plane
28 a Function ot Azimuthal Angle, In the Vicinity
of the Shuttle, for the 300 Km Case

The Depenacnce ot Maximum Return Flux of the
Atmosphericaily Scattered Molecules on Ambient

Number Density for the 200, 250, and 300 Km Runs

A Plot ot the Chi-Square Probability Density Function
tor v Equal to 1, 2, and 3

A Representation orf the Transformed Chi-Square
Nistribution, p(Z), for v = 50 (Solid Line)

A Representation ot the Transtormed Chi-Square
Distribution, h(W), tor v = 1 (Soiid Line)

A Comparison of the Exact and Approximate Acceptance
Probabilities fror v=1

viii

90

92

94

96

a7

98

A-10

A-12




A-3 A Comparison ot the Exact Chi-Square Distribution,
t(X;v) with the Approximate Distribution,
t,(X;v)

TABLES

1 Scaling Factors Used tor the Internal Representation
of Quantities in the Socrates Code

2 Exnaust Composition tor Sample Calculations

3 Atrospheric ana Caicu.idvional Parameters tor Sample
Calculations

ix

13

69

70




1. OVERVIEW OF THE SOCRATES CODE

The airect simulation Monte Cario method, as pioneered by G. A. Bird.1
provides a powerful technique for the simulation of real gas flows. 1t
briages the gap between continuum and free molecular flow, retaining
vaiidity 1n either extreme. It can be used to describe complex mixtures,
including effects of chemical reactions, heat conduction, viscosity and
aiffusion for flows in three dimensions. This report describes the
application of this technique to the contamination problem, considering
tlow fields created by the interaction of a spacecraft with the atmosphcre.
The resultant model has been named the SOCRATES code, which is an acronym
for Shuttle Orbiter Contamination Represcntation Accounting tor Transiently
Emitted Species.

Contamination of instruments on the space shuttle orbiter is an issue
ot major concern. The shuttle gives off matter through surface outgassing,
via various thrusters, and from flash evaporators. At altitudes where the
atmospheric mecan free path 1is comparable to or less than shuttle
dimensions, the deposition back onto shuttle-borne instruments will be
largely determined by the multiple collision environment surrounding the
shuttle. Even at higher altitudes, this may be the dominant source of
contaminants for some portions of the shuttle. In addition to physical

contamination of shuttle surfaces, "radiation contamination" is also a
potential problem as gases surrounding the shuttle collide at high speed
with atmospheric molecules. These energetic collisions can lead to

vibrational excitation and subsequent radiative decay. A similar issue of
some concern is the presence of ions in the vicinity of the shuttle which
can (possibly) be produced via the critical ionization velocity effect.
Ions in the shuttle environment may remain there for some time due to
eiectric field forces, and radiative recombination is another potential
source of radiation contamination. The situation is depicted schematically
in Figure 1.

Spectral Sciences, Inc. ($SI) developed an initial version of this
three-dimensional Monte Carlo model of the flow field about the shuttle so
that the contamination can be accurately characterized and understood. A
comprehensive model of the contaminant field surrounding the space shuttle
orbiter is crucial to the design of experiments which are to ftly on the

1. Bira, G. A., Molecular Gas Dynamics, Clarendon Press, Oxford (1976).




shuttle and to the development of procedures for minimizing the
contamination. The code is designed in a highly modularized fashion so
that additional physical and geomctric complexity can be added as deemed
necessary without requiring major rewriting of the model.

The basic calculational technique is well described by its originator
in Ret. 1. However, there have been significant extensions of the method
since the publication of Ref. 1. The present purpose is to describe how
the technique is implemented in SOCRATES; but elementary concepts and
relations which are essential to a coherent explanation are included here
also.

The direct simulation Monte Carlo method involves storing a discrete
number of molecules (via their velocities, positions, and other pertinent
information) in a computer. The solution region is broken up into a number
ot separate cells, and the solution is stepped forward in time in a two-
stage process. First, the molecules are advanced along their trajectories
by an amount appropriate to their velocity ana a time increment, At,. In
this tirst stage some molecules will leave the solution region, and some
will!{ be introducea as determined by the boundary conaitions for a
particular problem. The second stage is to simulate collisions in each
cell appropriate to Aty so that collision frequencies are properly
simulated. A basic hypothesis of the method is that if the time step is
made small enough, the processes of translations and collisions can be
uncoupled in this manner.

Periodically, the solution is sampled by accumulating statistical sums
ot number densities, velocities and other basic properties. The solution
is run repeatedly until statistical deviations are reduced to a desired
limit, and then physically meaningful output quantities are computed from
the statistical sums. The number ot molecules represented is typically
many thousand at a time, which is vastly fewer than the number occurring in
virtually all real flows. Hence, the construction of a dynamically similar
fiow to be simujiated in the computer is an essential feature of the method.

The logical flow of the solution procedure is shown in Figure 2, which
includes the steps described above. The following sections describe in
aetail the implementation of each of the boxes shown in Figure 2 and the
application of the code to some sampie problems.
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Shuttle Contamination Problem.

—



[DEFINE THE INITIAL STATE OF THE SIMULATION]
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[GENERHTE QUTPUT FROM RCCUMULATED STHTISTICS]

Figure 2. A Diuagram of the Basic Solution Procedure Utilized for
Steady State Solutions in the SOCRATES Contamination
Model .

2. GAS MODEL AND EQUILIBRIUM PROPERTIES
2.1 Preliminary Equilibrium Gas Relations

The far field equiiibrium state has properties which are of relevance
to the tlow field 1nteraction problem to be solved. Length and velocity
scates for the problem are obtained from the far field and used to
non-aimensionalize the internal code variables. Even if this were not




aohe, 1t w provide an important comparison case for densities,
vejocities, collision frequencies, etc.

For a rest gas in equilibrium, the normalized distribution function
tor the relative speed, c,., between molecules of species i and molecules of
specles j is given bya

. _ 2.3/2, = ; 2
tij(cr) = (4Craij /~NT) exP('“ij°r) , (1)
where
lJI'J'
Q3 T 2Ry T, J (2)

ana i, j is the reauced mass of the pair; i.e.,

_ mim- 3
Hij = '—L,,,A,,m. ' (3)
1]
with m, ana my representing the masses of the two species. In these
rerations, T, is the ftar field temperature and R, is the universal gas

constant. (Rg is used instead of Boitzmann's constant since the molecular
masses will be consistently represented in atomic mass units rather than
grars.) The available translational collisional encrgy between the two

molecuies, E is given by

C’

1
E., = E“ljci . (4)

2. Chapman, S. and Cowling, T. G., The Mathematical Theory of Non-
Uniform Gases, 3rd ed., Cambridge University Press, Cambridge, 86
(1970).




2.2 Analytical Form of the Collision Cross Section

Whenever the direct simulation Monte Carlo method is applied, it 1is
necessary (0 make trade olts between accuracy and simplicity in molecular
moaels. It does no good to use a complex molecular potential surface and
then find that reasonable computer run times result in very large
statistical fluctuations in the output. Since the final output will
retiect errors in the statistics as well as errors in the models, there is
a strong 1mpetus to use models which contain the essential physics, but
which can be applied in a computationally efficient manner. The current
state-of-the-art is the Variable-Hard-Sphere (VHS) model.3 in this model
mojecules have a collision cross section which varies as an inverse power
ot the available collision energy. Hence, if O3 is the collision cross
section for coilisions of species i with species j, then 055 is given by a
relation of the form

o35 = AES (5)

where Aij is a constant coetfficient. It follows that the effective
diameter ftor molecules of species i, di- is implicitly defined as a

tfunction of available collision energy by the relation

E® . (6)

- 2
Oijy = mdy = AjE.

A can be determined from a reference cross section and velocity via

i1
A = ( '2/4)°] (7}
ir T W0y miCyp ref :

It a4 reference cross section is given for a reference temperature rather
than a reference velocity, then the usual choice for the reference velocity
is that velocity which has a collision energy equai to the mean collision
energy occurring in collisions at the reference temperature.
Mathematically, this is equivalent to

3. Bird, G. A., “Monte-Cario Simulation in an Engineering Contuxt”,
Proceedings of the 12th International Symposium on Rarefied Gas
Dynamics, 74, Progress in Astronautics and Aeronautics, AIAA, New
York {1981).




3¢. .
<cp¥oy >

2
(cpirer
r'ret <Cp0,i>

L]

' (8)

where the angle brackets indicate averages taken over the distribution
tunction given in Eq. (1) evaluated for mj=m 4 and T, =Tper. Equation {8)
can be simplified to give

4(2 - ©)RTper

2 =
(Cr)ref = ml (9)

For simulations involving a large number of species, reference cross
sections are frequently not available for ail possible collision pairs. In
this case it is possible to specify A;; for self-collisions only, and then
use Eqg. (6) to get a molecular diameter as a function of collision energy.
Tnen, applying the relation

¢i; = wild; + a5)/212 (10)

the coeftficient in Eq. (5) for interspecie collisions is given by

Ay; = (3(~Ay; + VA2 (11)

For the internal workings of a Monte Cario code, it is usually more
convenient to express the collision cross section as a function of the
resative collision velocity rather than the collision energy. This is
simply achieved via the relation

_ -2 .
o;5 = Bjjc, : (12)

where

-6
Bij AiJ(uij/z) . (13)
The parameter w can be related to 7n, the exponent of distance in an

nverse power intermoiecuiar force law via the relation®

W = g . (14)




Hence, hard sphere molecules (for which n goes to infinity) are represented
by @ equai to zero. There is a substantia! body of evidence, however, that
the effective si1ze of molecules does indeed decrcase with increasing
collision energy, so a positive vailue ot « is usuaily a better choice. o
can be determined from molecular beam data, or from its macroscopic
wmplications. For example, if s is the exponent tor the variation of the
viscosity coetficient with temperature, then it can be shown? that

s = w+ 0.5 , (15)

S0 a measurement of the temperature dependence of the viscosity coefficient
serves as an indirect determination of .

in oraer to incorporate the model for internal energy transter to be
discussed in Section 5, it is necessary that o be assumed the same for all
interactions. This represents onc of the major restrictions in the current
state of modeling.

Although the sizes of molecules are allowed to vary in the VHS model
1n deciding whether or not a collision is to occur, when a collision does
occur the post collision velocity components are computed as if it were a
nara sphere collision (see Section 5). This results in a substantial
computational simplification and yet retains good agreement with the
macroscopic predictions of the more exact model .3 (See Ref. 1 for a
atscussion of molecular scattering for general power law potentials.)

2.3 Equilibrium Reference Properties for a Multi-Component
Gas

One advantage of the VHS model is that the molecules have a well
detfined cross section, so it is possible to define a mean freec path without
putting Jimitations on the minimum detlection angle that is considercd. As
1s the general case for multi-component gases, however, each component has
1ts own mean free path, and the overall mean free path for the mixture must
be detfined as a weighted average of the mean free paths of the indiviaual
species. The somewhat cumbersome relations required to calculate the
overall mean free path are given here. [t should be noted that the mean
free path is calculated only once tor a given problem, so the computational
eltfort required to evaluate it is completely negligibile.




An indivigual molecule of species i will suffer collisions with
molecuies ot species j with a trequency vg given by

4

V'{ = nquTlJcI‘) N (16)

where Nyg is the number aensity of species j and <“ij°r> is the average

proauct of cross section times relative velocity for the two species,
cutained by Invegrating over the distribution function given in Eq. (1).
when this operation is performed, the resuit is

h ) _ w-1/2, =
v o= zsijnjmr(z u)aij /T , (17)

wnere ' denotes the gamma function.

The total collision frequency for an individual molecule of species i,

v;. is obtained by summing Eq. (16) over all species, i.e.,
p .
v, = oyl (18)
L1
J=1

ana the mean free path, A;, for molecules of species i is given by

1 1 e
A= = 5 VERT/ () (19)

wnere <c;> is the mean molecular speed for species i molecules. The mean
tree path for the gas mixture, A\ is then defined as the number density
welgntea aversge ot the xi via

D

n: _z
s' io™1
= 2
Ao : N , (20)
=]

-

where n_ 1s the total number density:

p
Mg = Einim . (21)




A useful velocity scale is given by vg, detined by
Vg = V2RyT /<m> , (22)

where <m> is the retference mean molecular weight, i.e.,

N

n

<m> = (23)

N

ot
i
—

[+

Vg s the most probable molecular speed for molecules of the mean molfecular
welgnt at the reference temperature.

2.4 Internal Energy Model

The current state of modeling for internal energy effects in Monte
Carlo tlow field simulations is the phenomenoclogical model of Borgnakke and
Larsen.? In this model, transfer of energy between internal and
translational modes is allowed, but it is necessary to assume that each
species has a fixed number of internal degrees of freedom, §i- This is
equivalent to assuming a constant specific heat, Cpi' for each species
which can be relatea to the number of internal degrees of freedom via

Cril;
g, = 2-E2 -5 . (24)
Ro

Alternatively, &; can be reiated to the ratio of specific heats for species
i, ¥;, by the relation

5 ~ 371
Cl = T;—:T . {(25)

The interchange of internal and translational energy will be discussed in
Section 5, and thc selection of initial conditions will be discussed in
Section 9.

q. Borgnakke, C. and Larsen, P. S., "Statistical Collision Model for
Monte Carlo Simulation of Polyatomic Gas Mixture", Journal of

Computationpal Physics, 18, 405 (1975).

_10_




3. INTERNAL REPRESENTATION
3.1 State Vector

Each simulated molecule in the SOCRATES code is represented by a state
vector which comprises all of the information the code has with regard to
that particular molecule. The state vector has:

e Position elements defining the location of the molecule in
Cartesiun coardinates.

e Three velocity elements, giving the corresponding velocity
components in the same coordinate system.

¢ A value for the internal energy (usually rotational) of the
molecule. Note that the basic model does not discriminate
between internal modes tor a particular species. This can be
done, if desired, by introducing separate species tor the
distinct modes.

@ An indicator identifying the molecular species. This
indicator in turn implies all of the properties associated
with that species (molecular weight, number of internal
gegrees of freedom, name, etc.).

e An indicator giving the computation cell in which the molecule
currentiy resides. (This could be calculated from its
position, but it is needed so often in the calculation that
the extra storage location is justified by the increase in
efficiency.)

e A time element, giving the time at which the molecule will
strike a solution surtface element if it continues on its
current trajectory. (See the discussion in Section 11.)

3.2 Reduction to a Reasonable Number of Simulated Molecules

It is clearly impossible to run a computer simulation with anywhere
near the same number of molecuies that exist in the actual flow problenm.
The adjustment that is maae to make the simulation possible is to
artificially increase the cross section, and decrease the number density,
by the same liarge factor. [t is the product of number density and cross
section which determines the collision frequency for a given molecule, and
it is the collision frequency which must be correctly simulated 1f the
correspondence between the real and simulated flows is to be accurate.
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This is an essential feature of the direct simulation method which has not
aiways been adequately emphasized. It means that the internal scaling
tfactors do not proceed on a strictly dimensional basis. For example, the
scaling tactor for cross sections is not the square of the scaling factor
for lengths.

3.3 Internal Scales

Many problems are more reasonably handled if the internal calculations
are carriea out with scaled or dimensionless values. This avoids possible
problems such as numerical overflow which can cause an execution time
error. Such errors can be particularly insidious and diftficult to locate
in & code whose very essence involves the random combination of numbers.

The output 1is produced in physically meaningtul dimensional tform.
Hence, the scaling that is discussed here is irrelevant (or nearly so) to
the interpretation of code output; it is strictly a matter of the 1internal
representation.

The choices for length and velocity scales are A  and vg as definea in
Section 2, which are used to non-dimensionalize the position and velocity
elements of the state vector. There is no need to provide further
non-dimensionalization of mass beyond representing them in atomic mass
units, so none is provided. Hence, the scaling factor for energy is just
vi. which is used to non-dimensionaiize the internal energy element of the

stale vector.

Number densities are scaled with respect to the far field ambient
number aensity, n,, which leaves only the cross section scaling factor to
be determined. This factor follows from the condition of ftlow similarity,
which requires that the probability of a molecule suffering a collision in
traveling a given path length be accurately simulated. This dimensionless
propability can be expressed as the product of a cross section times a
number aensity times a path length (at least for small enough path
iengths), and it is required that this product be the same for dimensional
and scaled representations. This implies that the product of the scaling
tactors tor these three quantities be unity and, therefore, that the cross
section scaling factor be 1/(nmxm). The internal scaling factors used in
SOCRATES are summarized in Table 1.
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Table 1. Scaling Factors Used for the Internal
Representation of Quantities in the Socrates
Coae. All Variables are Defined in Section

2.
PROPERTY SCALING FACTOR
Length ............ Ao
Velocity .......... Vg
Time .............. Ao/ Vg
Number Density .... Ng,
Mass .............. 4.m.u. ,
Energy ... ..., (u.m.u.)vz
Cross Section ..... 1/ (nghg)

3.4 Weighrting Factors

Statistical welghting factors are a crucial element of a successtful
Monte Carlio simulation, allowing trace species to be described with
reasonable accuracy. The weighting factor is the number of “real”
molecules that correspona to each "simutated" molecule. A '"simulated”
moiecute corresponas to one molecule's worth of storage (one state vector)
allocatcd in the program, and the weighting factor is its statistical

welght. So, tor example, the total number density in a cell, Rieyy €8N be
cxpressca
)}
. - S{' Lt (26)
“Cell - P v ’

=1

-

witere N; 1nuicates the numober of simujated molecules of species i in the
cerl, W, 1s the weighting tactor for that species in that cell, V is the
cerl vorume, ana p is the number of species. The product N,W; that appears
in Eq. (26) is termea the number of “"real" molecules o! species i in the
cerl. Note that Rie,p a8 caiculated by Eq. (26) is a scaled¢ value; it
woula have to pe muitipliea by n,, as shown in Table 1, to become a
dimensional evaluation of thne number aensity.

The weighting tactors usea in SOCRATES are dependent on cell and
species.  Hence, flow fields where a given species is much more dominant in
one oportion of the solution region than another can be accuratcely

represchoed.

13 -~




A critica) error that can occur in Monte Carlo codes is to have the
number of slmulated molecules exceed the aimensioned limit of the code. On
the other nhand, it is generally desirable to have ds many molecules as 1is
feasible to obtaln good statistics. Resolution of these contlicting
considerations 1s complicated by lack of a priori Knowledge of what the
species number densities will be as a function of space and time. The way
the resolution is achieved is by a dynamic adjustment of the weighting
factors, as required. This keeps the number of simulated molecules more or
tess constant while allowing the number of real molecules to adjust as the
sotution evolves. The introduction of weighting factors, with the ability
to aajust them as the solution demands, is an important feature ot a Monte
Cario simuifation which is to be usable by non-experts.

4. GRID COORDINATES AND GRID STRUCTURE

As aiscussea in Section 1, the Monte Carlo procedure works by breaking
the calculation region up into cells. A solution cell should be a region
in which no properties change greatly, i.e., thc dimensions of a cell
shoula ideally be small comparea to the local scale length of the tflow
tield. Coflisions are simulated on a ceil-by-cell basis, and molecules can
experience collisions only with other molecules in the same cell. There is
no other spatial criterion used for determining collision partners, so the
cell determines the collision environment for any molecule within 1t. in
gadi1tion to gefining the coilision environment, the other major function of
the cetl structure is 1o aetermine the points at which output is generated.
There 1s no requirement that the cells be divided up in the same coordinate
system used in the molecular state vector.

For Monte Carlo calculations, as tor other types of computational
fluia mechanic analyses, the seiection of grid geometry 1is a critical
requirenent which is otten more ot an art than a science. Considerations
n the seilection ot a gria are:

® The grid should be as simple as possible, since the prograum
must repeatedly aecide which cell molecules resiae in as they
move throughout the solution region. If this determination
required the solution of a complex equation or sifting through
tables, the entire program would run signiticantly siower than
it the cell can be determined easily.




¢ The grid should concentrate cells where graaients are the
largest, so that the least number of total cells (and
molecules) are needed to obtain an accurate solution.

¢ The grid should provide flow field information where it is
required, with the resolution that is desired for the answer
of interest.

The SOCRATES grid structure is a simple extension of the basic
Cartesian coordinate system that is used elsewhere in the code. The cells
are determined by the intersection of three families of planes, each family
being perpendicular to one of the coordinate directions. For each
coordinate, there is @ plane al zeruo and subsequent planes procced outward
in the plus and minus courdinate direction. For instance, the intersection

points, Xx;, on the positive x axls are given by

3

- exp(JB/N} - 1
X; Xmax exp(B) - 1 ! (27)

where X nax is the position of the last plane (the edge of the solution
region in that direction), N is the number of planes intersecting the
positive X axis, and B is an adjustable parameter. For B approaching zero,
successive planes have equal spatial increments; and as B is increased the
planes become more concentrated near the origin. The same relation is
applieu for planes intersecting the minus X direction, with x being

max
replaced by Xoin The other four directions (xy and *z) are handled in an
analogous fashion. Note that the B and N parameters are specitfied

separately for each of the six directions away from the origin, depending
on the physics of the probiem under consideration. These values can be
input by the user or automatically selected by the program. The SOCRATES
gria structure fulfills the objectives enumerated above to a substantial
aegree. The relations for cell boundary locations are easily inverted to
ootain the cell number corresponding to a given position, and the parameter
ot the distributior allows for concentration of cells in the inner region
wnile allowing larger cells further out where the gradients are less
severe.,

A sample cell structure resulting from this technique is illustrated

in Figure 3. For visual clarity, the number of planes has been limited to
two 1n eazh of the six directions, since this is the fewest number which
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Figure 3. A Schematic Showing the Basic Design of the Socrates Cetl
Structure Which Uses Cartesian Coourdinates with Uneven
Spacing.

ittustrates the uneven spacing. A typical calculation would have severail
times that many pianes, but the figure is difficult enough to interpret as
1t 1s. The shuttle (or, in principic, any spacecratt) can be arbitrarily
tocatea within this cell structure; though it should be locatea near the
center ot the grid structure for it to make sense. Similarly, the wind
airection as seen trom the shuttle can come frum any direction whatsoever;
tnere is nothaing 1n the cell structure or coordinate dgetinition wnicn
resiricts it.

3. COLLISION MECHANICS
§.1 Relations for Elastic Collisions

The purpose of this section is to present reiations appropriate to the
simujation ot a collision in the SOCRATES code. (The question of how
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motecuies are selreclted for collislons, which 1s crucial to the proper
simu:ation ot collision frequency, will be taken up in the next section.)
Conservation of momentum implies that the center-of-mass velocity of the
collision palr is unchangea by the collision; and conservation of energy
then impiles that the magnitude of the relative velocity between the

5 Since the

cotlision partners 1s also unchanged by the collision.
cotilsiun is treatea as a statistical event, all that remains is to select
the airection ot the post-collision relative velocity vector from the
correct uadlsiribution. As mentioned in Section 2, cojlisjons in the VHS
model are treatea as hard sphere collisions when they occur (though they ao
not occur with the same velocity dependence as do hard sphere collisions).
dence, as tar as the collision mechanics is concerned, the model 1s a hara
spnere  model . For hard sphere molecules, all directions for the
post-cojlision retative velocity vector are equally likely. This is the
chret computational simplicity of the VHS model.

et the two molecules be identitiea by subscripts 1 and 2, with m ana

v denoting thelr masses and velrocities. It 1 and f indaicate initial and
‘1nitt states, then the reiations for the collision can be summarized via:

~ MyVyy = MaVoj

Vem = ny v, , (28)
Vr = vy Vail (29)
cos(8) = 1 - 28 . (30)
s1n(8) = V1 - cos?(e) . (31)
¢ = 27B , (32}
3 Vincenti, W. G. and Kruger, C. H., Jr., Introduction to Physicul Gas

Dynamics, John Wiley and Sons, 348 (1965).




Vg = vplcos(®), sin{(e)cos(¢), sin(e)sin(e)] , (33)

- = MoVpy
Vip T Vg t

o ATy (34)

ana
- - myVpy
rt
Voy = Vep - . {35)
ml + mz
[n these retations, ana throughout this report, B indicates a ranaom
variabie whicn is evenly distributed on the interval zero to one. Each

time that B appears a distinct evaluation of the random variabic is
mmpliea.

5.2 Effect of Coordinate System

Note that the expression far the post-collision relative velocity
veclor (Eq. (33)) is not coordinate system specitic. The indicated vector
components can apply to any locally orthogona! coordinate system, since the
atrection impliea is random. The convenient coordinate system to use, ot
course, 1s the coordinate system used to define the velocity elements of
the statve vector.

Although Eq. (33) is independent of coordinate system, there 1is a
source of error which is aependent on coordinate system. This error arises
from 4 basic premise of the direct simulation Monte Carlo methoa, namely
that position in the cell is ignored when selecting collision partners. If
the velocities are expressed in a coordinate system which has spuatially
varying basis vectors, then differences in position between the two
molecuies can imply an erroneous difterence in velocity.

SOCRATES makes use ot the effect of spatially varying basis vectors to
solve an otherwise difficult problem. The problem arises due to the
presence of concentrated sources of contaminants, such as thrusters and
evaporaior vents, which are moaeled as point sources producing molecules
traveling (initially) directly away ftrom the source. Since there is no
lengih scaie to a point source, the assumption that properties are constant
tor che cells in the immediate vicinity of the source must be invalia.
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This can resuit in improper collision sampling if special care is not
taken.

It the velocities are expressea in Cartesian coordinates, for
instance, then two molecules selected from different positions within the
ceil containing such a point source can have a substantial relative
velocity. This relative velocity is illusory, howecver, since it merely
results from the assumption of a point source and the neglect of spatial
differences; there should nat be collisions based on this relative velocity
since the molecules are, in fact, heading away from each other.

A simple resolution to this problem is to exprcss the source velocity
etements in spherical polar coordinates. In these coordinates, every
molecuie leaves the point source with the same velocity in the direction of
the spherical radius vector. Expressed in spherical polar coordinates, the
relative velocity disappears. SOCRATES transforms velocity vectors to
sphericait polar coordinates for cells in the vicinity of point sources
{specitically, when the totai number density is greater than three times
the ambient number density). Collisions are sampled in the transtformed
coordinates, and then the velocity elements are transformed back to the
norma!l representation after collisions have been sampled for the cell in
question.

5.3 Simulation of Inelastic Collisions

SOCRATES uses the Borgnakke and Larsen? phenomenological model for

transter of energy between internal and translational modes. In this
moael, a collision is assumed to be either perfecctly elastic or perfectly
inclastic, via a user specified probability. A perfectly inelastic

coilision is achieved by summing the total pre-collision energy (internal
energy of both molecules plus the translational energy of their relative
motion, Eg. (4)), and then assigning post-collision values from the
equilibrium distribution for collisions with that total amount of energy,
taking into account the number of internal degrees of freedom in the L(wo
moliecules. Note that this model has the ability to relax from a
nonequrlibrium to an equilibrium state via an effective collision number.
The ability to exchange 1internal energy in such a manner comprises a
significant increase in capability for Monte Carlo codes beyond the
previous moaels where molecules had no internal energy. It is this
capability which enables the codes to realistically predict the macroscopic
effects of polyatomic gas flow.




Let &€, and ¥, be the number of interna!i degrees of freedom of the two
motecules in an inelastic collision, and Eg be the total collision energy
aefined by

B¢ = Egj * Eyj + Ezy (36)

where E.; is the initial translational collision energy defined by Eq. (4),
and Eq; and Eaj are the pre-collision internal energies of the two
molecules. Using the procedures presented in Appendix A, the somewhat
cumbersome expressions given in Ref, (4) can be recast in terms of the
chi~square distribution. Post-~collision values for the respective energies
are given by

Eyp = %1% (37)
f Xy + X5 + X3 '
XEg
EZf = ’ (38)

Xl + x2 + X3
anda

XoE
3%s P
Eep = X, + X; + Xg , (39)

where X, 1is selected from a chi-square distribution with Cl degrees of
freeaom, X, is selected from & chi-square distribution with &, degrees ot

frecdom, ana X5 is selected from a chi-square distribution with 2(2 - o)
degrees of treedom. (Efficient procedures for sampling from a chi-square
agistribution are also given in Appendix A.) The post-collision

translational energy is then used to determine a new reiative velocity
between the two molecules. With this new relative velocity, the previous
retations for determining the post-collision velocity elements of the
molecules apply ftor inelastic collisions as well as for elastic collisions.

The tact that the translational energy is selected from a distribution
with 2(2 - w) rather than 3 degrees of frecdom merits some explanation. It
is due¢ to the fact that these molecules are not random samples from the
gas, but rather special molecules owing to their bcing the product of a
collision. This point can perhaps best be seen by considering microscopic
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reversibility, where the inverse collision occurs with the same rate in
equilibrium. For this reverse process, molecules participating in it are
not all equally probable, since those with greater relative velocities are
more likely to collide. Hence, the number ot degreces of freedom does take
on the value three for the speccial case of © equal to 1/2, which is
precisely the case of coilision frequency being independent of reclative
velocity. Translational energy in collisions behaves as if it has 2(2 - o)
aegrrees of freedom.

5.4 Collisions Between Molecules with Distinct Weighting
Factors

There is an obvious problem when considering a collision between two
simu:iated molecuies with distinct weighting factors, since they represent a
agitferent numper ot real molecules. If W and W; represent the weighting
factors tor the two molecules, with W; being greater than Wy, then the
collision is generally counted as W, ‘“events". (More precisely, the
wergnuing tactor applied to the collision is generally taken to be Wp.)
This 1s accompiished by always assighing post-collision velocity and cnergy
components to the state vector of the molecule with the smaller weighting
factor, but oniy changing the components ot the moiecule with the greater
wergnting tfactor some of the time. The probability that the molecule with
e greater welighting factor will have its components changed is simply
CIRANE Statistically, this means that for a large number of simulated
cortlisions, each such simulated collision will average out to W, real
coirllsions for cach species, even though their weighting factors daiffer.
it shoula be noted that this does violate conservation of momentum ana
energy on an inaividual collision basis, but these quantities are conserved
in the aggregate over a large number of collisions.

[n some cases the collision is assigned a weighting factor W, which is
iess thun cither of Wy or Wy. When this is done, the velocity components
ana internal energies of the two molecules are changed with & probability
of W./W and W./Wy, respectiveiy. (See Section 6.)

5.5 Reactive Collisions
Keactive collisions c¢an be simulated directly. The treatment ot

reactlve collisions is similar to that for inelastic collisions, except
tnal @ heat of reaction is added to the total energy expressed in Eq. (36).
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Reactive collisions can result in the disappearance of reactant molccules,
with the post-coilision state being applied to the product molecules.

5.5.1 Types ot Reactive Collisions

SOCRATES has a fairly comprehensive chemistry package which is capable
ot handling a variety of reactive collisions. Generally speaking, a
reactive collision is an event which occurs due to collisions with a
probability that depends on the velocity (or energy) of the collisions.
The tollowing generic types of redactions are treatable:

1. Specific Bimolecular Reactions, i.e, reactions of the form
A+B~-C+D '

where A, B, C, and D are particular species. An example of
a reaction of this type is

O + Hy0 » 0 + Hy0"

(In*this example, the vibrationally excited state of water,
Ho0 , is treated as a distinct species.)

2. Generic Bimolecular Reactions, i.e., reactions of the form
A+Ma2aB+ M ,

where A and B are particular species, and M can be any
species. An example of a reaction of this type is

HoO + M » Hp0" + M,

which is similar to the previous reaction except that now
any molecule can serve to excite the water molecule.

3. Dissociation Reactions, i.e., reactions ot the form
A+M+C+D+ M ,
where M is any molecule, and C and D are the fragments of A
that resuit from dissociation. An example of a reaction of

this type is .

02 + M0+ 0+M
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5.5.2 Reactive Collision Probability

The Monte Carlo program simulates all of the above reaction types by
calculating a reactive cross section which is a function of the relative
collision energy. When a coilision occurs, the reaction is simulated with
a probability which 1is proportional to the ratio of the reactive to
collision cross section at the relative velocity for the collision.

There are two options for specitying the reactive cross section. The
first is to specify an Arrhenius rate constant, k,, of the form

kp = ATlexp(-E,/RgT) (40)

where &£, is the activation energy of the reaction and A and n are
parameters of the relation. (Ry is the gas constant and T is temperature.)
. . . * , . .
The unique reactive cross section, ¢ , corresponding to Eq. (40) is given
3
by*

(14 855)m-5a , .
v.g = 1 - E,/E, (E, - E . 41
r 2R (n + 3/2)V alte (Fo al tar)

wherc sij is unity for like reactants and zero for unlike reactants, [
represents the gamma tunction and E. is the collision energy given by Eq.

(4). Note that a rate constant is defined in terms of an equilibrium
velocity distribution, so the correspondence between Eqs. (40) and (41) can
be maae. There is no requirement, of course, that the reactive cross
section given by Eq. (41) be used only in equilibrium situations. When
this option is used, only the arrhenius parameters A,n and E,; need be
specified; the program automatically computes the corresponding reactive

cross section.

For some reactions, the form of Eq. (41) is too restrictive, and it is
then possibie to input a table giving the reaction cross section. The form
of the table is ot the same functionai form as Eq. (41}, namely the product
of the relative velocity times the reactive cross section is given as a
function of relative collision energy. Although this form is not standard,
't .s far more convenient for reactions where one of the reactants is
generic ("M"), since there is no correspondence between collision velocity
and cotlision energy until the masses of bouth reactants are specified.




5.5.3 Options for Simulating Reactive Collisions

SOCRATES has distinct options for simulating reactive collisions which
are reflective ot different anticipated user needs. In all options, the
sampling of the reaction rate (if it is being performed) is done the same
way. Whenever a collision occurs between the two reactants, the reactive
cross section is calculated, and the reaction is counted with a weighting
tactor, W., given by

*
vpo

W, = W . (42)

r [
Vrﬂ'

where W, is the collision weighting factor (see the previous section).
Hence, even though the reactive cross section may be significantly smaller
than the collision cross section, the statistics on the reaction rate are
similar. (The statistics for the reaction rate may converge slower due to
the velocity dependence of the reaction cross section; but not due to its
absolute magnituae.) If two molecules can participate in multiple
reactions, statistics are kept for each reaction.

It products are introduced as a result of the reaction, they can be
introduced at every simulated reactive coilision with a weighting factor of
W.., or introduced with a weighting factor of W, but only wr/wc of the
time. The difference depends on the importance of tracing product species
in the simulation. The former approach will result in more computational
effort being spent on the product species, but it will give better
statistics on them. In either case, reactants are removed from the
simulation with a probability of W./W. in any reactive collision.

In many cases, it is the reaction rate which is of interest. If the
reactive collisions are relatively improbable events, then the velocity
distribution of the reactants will be the same irrespective of whether the
reaction is actually simulated. For T-V excitation reactions, which are of
primary interest for IR interference, it is possiblie to calculate the
excitation rate without explicitly introducing excited state molecules into
the simulation, or removing the ground state molecule which becomes
excited. The calculation of reaction rates in such a manner 1is easily
incorporated into both procedures for simulating equilibrium flow.




Furthermore, such a procedure can be extended to give accurate
estimates for the competing processes of collisional quenching and
radiative decay. Since a vibrationally excited molecule has the same mass
as its ground state counterpart, the velocity distribution of excited state
moiecules should be well approximated by velocity distribution of the
corresponding ground state molecules. Hence, it is possible to define an
artificial quenching reaction which has ground state molecules as both
reactants and proaucts (but with the proper quenching cross section). To
make the discussion more concrete, consider the following reaction scheme:

ke
A+M 2 A%+ M ; (R1)
. fa -
A+ M » A+ M : (R2)
* kr
A <+ A+ hv . (R3)

where excitation, quenching, and radiative decay are represented by
Reactions 1 through 3, respectively. The rate constants k, and kq are
determined by the existing velocitv distribution of the reactants and the
relevant cross sections as a function of collision velocity. {The rate
constant k, is simply the inverse ot the radiative lifetime, Tr.) Hence,
1t the velocity distribution of the excited state species is the same as
for the grouna state, then the rate constants are the same in the
artiticial reaction scheme:

Ke

A+ M 5 A+ M ; (R1')
ky

At"’ M -+ At+ M H (RZ')

wnere A, nOwW represents both ground state and excited state molecules. The
artificial reaction scheme does not require the removal of reactants or the
introduction of products, but it does provide the basic rate constant
intormation (i.e., kg and kq) required to determine emission rates. At
equilibrium, Reactions 2 and 3 will balance Reaction 1, and A will be
retat:d to A* by
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Akg = A'(kg * kp) . (43)
Substituting the definition of A,
At = A+ A N (44)

it is possible to solve for the emission rate via

keko

Akp = ————aA
r ketkgtkp ¢

(45)

Ail of the information required to calculate the emission rate via Eq. (45)
is obtainable via a chemical reaction scheme in which products are never
explicitly introduced and reactants are never explicitly removed. This
capability is an option in SOCRATES, and it is completely compatible with
the procedures for speeding up execution in collision dominated scenarios.

6. COLLISION SAMPLING IN A MULTI-COMPONENT VHS GAS
6.1 General Considerations and Approach

The two general considerations in the sampling ot collisions are, as
usual, accuracy and efficiency of the simulation. As far as accuracy is
concerned, it is crucial that the method in which molecules are selected
for collisions be proper. The correct collision frequency must be
simulatecd between various speclies dnd, in fact, between the different
portions of the velocity phase space for the various species. Furthermore,
this frequency of simulated collisions must remain correct without any
requirements put on the velocity distribution function; it certainly must
not be assumed that there is a Maxwellian velocity distribution.

As far as efficiency is concerned, it is highly desirable to use a
method of collision sampling involving a computational effort which is
proportional to the number of simulated molecules, N, in a cell. Methods
which are proportional to a power of N greater than unity can becone
prohibitively time consuming as the number of molecules is increased - a
limit which should be made as accessible as possible tor obvious physical
reasons.




6.2 Collision Sampling for a Single Component Gas

The simplified situation of a simulation involving oniy one species is
considered here. This problem is significant in part due to all the
attention it has received and, as will be seen, it serves as an important
reference case. When there is just one species, then there is just one gas
kinetic cross section (though it is still, of course, a function of
collision energy), just onc molecular weight and just one weighting factor
tor each cell. In short, just one of everything that has a molecular
subscript. Hence, in this subsection all such quantities will be presented
without subscripts. The most important simplification of having a singlce
species is that there is just one collision <class, i.e., only
seit-collisions of the piven species with itself are possible.

6.2.1 Cullision Pair Selection

As aiscussed in Section 1, collisions are sampled on a cell-by-cell
basis until the number of collisions simulated is appropriuate to the
overall solution time step, At,. The only spatial requirement placed on
potential collision partners is that they be within the same cell. In
particular, it is not required that they be within a molecular diameter of
ecach other. (Note that if all pairs of molecules were inspected to find
those that were sutficiently closc to each other, this would involve a
computational effort in proportion to the square of the number of molecules
in the cell.) The rationale tor this is that the cells should be small
enough so that macroscopic properties can be assumed constant across the
cell.  When this is the case, then a molecule within the cell can be
considered typical ot a molecule which might exist anywhere within the
cell, and molecular location can be ignored when selecting potential
collision pairs.

Spatial consideration aside, the probability of any two molecules
experiencing a collision is proportional to gc,, the product of their
mutual cross section times their relative velocity. This probability is
correctly simulated via an application of the acceptance-rejection
technique. A maximum value for oc., (0Cp)pax. Is stored for each cell.
(This value is updated whenever a greater value is encountered.) Pairs of
molecules are selected at random from the cell, and oc, for that pair is
caiculatea. The ratio r, defined by
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O'Cr

I o (a6)

is determined. A random variable, B, is then generated, and the pair of
molecules is accepted as collision partners if r is greater than B. This
proauces the proper relative collision probability without regard to the
existing velocity distribution function.

6.2.2 Collision Time Counter tor a Single Component Gas

The volumetric collision frequency for a single component gas, vV,
(collisions per unit volume per unit time), is given by

v = %n2<6cr> , (47)

where, as in Section 2, n represents the number density of the species, and
<gc.> is the average product of collision cross section and relative
velocity. At first inspection, it would seem from Eq. (47) that a correct
simulation of collision frequency would require evaluation of <gc.>, which
would mean that all pairs of molecules in a cell would have to be
considered. Such a procedure involves a computationa! effort proportiocnal
to N¢ and is to be avolded, if possible, in preference to a method which is
proportional simply to N. The alternative approach., introduced by Bird,1
is the time counter approach. For each collision a time counter, te, is
incremented by an amount which depends on the relative velocity of the
collision. Collision sampling continues in a cell until its time counter
has been advanced beyond the overall flow simulation time, at which time
the code procecds to the next cell (which has its own time counter). The
time counter increment, at,, is given by

at, = —=—— (48)
VnZO’cr

where V is the cell volume and n is the species number density given by

n = W (49)
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with W being the weighting factor for the species. 1t should be stresseq
that Eq. (48} applies for each real collision. As 1is discussed in
Subsections 3.4 and 5.4, each simulated collision corresponds to W real
collisions, so when a simulatea collision occurs the actual applied
increment to T, is W times the value given by Eq. (48). A demonstration of
the validity ot Eq. (48) is given in Ref. 6.

6.3 Collision Class Sampling in Gas Mixtures

The above procedure tfor a single species gas can be extended to a
multi~component mixture via consideration of distinct collision c¢lasses.
In this approach, collision classes are defined by the colliding pair
iaentities. Hence, if there are p species in the simulation then there are
pi{p+1)/2 collision classes, which can be identified by the subscripts of
the corresponding molecular pair. (The number of classes is not p2 since
the oraer of molecule specification is not taken to matter in determining a
coilision class. Hence, the class identified by the subscripts i,j is not
aistinct from the class identified by the subscripts j,i.}

In collision class sampling each collision <class 1is sampled
separately, and the collision sampling in a cell is not complete until all
classes have been considered. Each collisionp class has its own stored
value ot (“ijcr)max and its own separate time counter, tcjj' It can be
shown that the appropriate time counter increment in this case is

t = — . 5
a c1] ninjVO'iJ-cr ( 0)

wnere, as before, sij is the Kronecker delta which is unity for i=j and
zero otherwise. As in the previous section, the above increment applies
tor each real coilision. A simulated collision usually corresponds to W
real collisions, where W; is the lesser of W; and WJ (see Subsection 5.4),
so when a simulated collision occurs, the applied increment to tcij is Wy
times the resuit of Eq. (50).

6. Elgin, J. B., “Getting the Good Bounce: Techniques for Efficient
Monte Carlo Analysis of Complex Reacting Flows", Spectral Sciences,
inc. Report. No. SSI-TR-28 (1983).




6.4 Glopbal Collision Sampling in a Gas Mixture

Although the procedure described above is quite reasonable for, say, a
two-component mixture, it becomes exceedingly complicated as the number of

species increases. For 10 species, tor instance, the program must loop
over 55 distinct collision classes tor each cell, and storage must be
allocated for 110 gquantities in each cell. As the number of species

Increases, the storage requirement tor the collision sampling constants
quickly becomes greater than the storage required tor the molecular state
vectors! The obvious simplification is to search for a technique where
collisions are simulated simultaneously for all collision classes, with
cach class having its proper relative probability of being selected. The
overall collision sampling then continues until a single time counter
indicatss that sufficient collisions have been sampled in the current time
step ana cell.

6.4.1 Global Collision Time Counter
If molecular pairs are selected for collisions such that the various

collision classes automatically appear with the proper retative frequency
{see¢ below), then it is not necessary to consider separate time counters

for all Lhe various collision classes. One approach that could then be
applied is to ieep a collision time counter for just one collision class
and increment it when collisions of that class occur. It the various

colliston classes are being selected according Lo their correct relative
frequency, tnen simulating the proper trequency tor one collision class
will ensure, in the long run, that all collision classes are occurring with
the correct frequency. A disadvantage with this approach is the necessity
of making an arbitrary choice for the collision class which is to have a
time counter. Furthermore, there may be no good choice for a reacting tlow
where the dominant species can vary strongly from place 1o place.
(Cicarly, one would not want to select a class of collision that does not
occur in u given cell, since the result would be a never-ending samp!ing ot
coitlisions ¢l other classes.)

The preferred approach is to define a giobal collision time counter,
tg, wnich is a weighted average of the time counters of all collision
classes; i.e.,

B 1< < 51
tg = tl ZPisteiy (51)

o] i
i=1

=1

e




where

1
¢ =y Yoy (52)
b b

=1 =1

(SN

and the nij are non-negative coetficients which can be selected at will.
Nute that in this formulation every collision class will result in some
increment of the global time counter (unless Djj is zero for that class),
so the collision sampling trequency is not dependent on any one collision

class.

it remains, of course, to specify the Dij' A very convenient choice
1s given by

Dy = —3— . (53)

Firstly, Eg. (53) 1is convenient because it tends to make the collision
classes with the higher collision frequencies count more, resulting in good
statistics tor tg irrespective ot cell location. (Note that Dij is cell
gependent since the species number densities are cell dependent.)
Seconaly, Eq. (53) resuits in a particularly convenient form for tg. The

normatization factor given in Eq. (52) can be summed analytically to give

p i
2 < < n.mn,
v, o= 2 oy 234« .. (54)
4 712“ VN 1+ SIJ €13
i=1 j=1

Hence, a collision of cilass 1j, which would produce an increment of Atcij
to its own time counter produces an increment Atg to tg given by

2ninj ( )
at = ———ft , 55
g nz(l + 81]) (o I
where, again, n is the total number density of all species in the cell. If

Eq. (30) 1s substituted into Eq. (53), the result is
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e T TE (56)
vn Ujjcr

at

Equation (56) 1is e¢xtremely significant since it recaptures the precise form
0! Lthe time counter increment tor a single species (Eq. (48)), but
indicates that it is completely valid for a multi-component mixture so long
as the various collision classes are sampled with the proper relative
frequency.

6.4.2 Collision Pair Selection in Multi-Component Mixtures

when considering selection of collision pairs, it 1is crucial to
remember the aistinction between real and simulated molecules discussed in
Subsection 3.4. Given two simulated molecules selected at random from
within the cell, the probability of their having a real collision is
proportional to wichijcr' However, real —collisions canrot  Thappen
individually; they come Wy at a time, where Wj is the lesser of W; and Wy
Hence, wnen a collision is decidea upon in the program, Wy of them will
occur. To compensate for this, potential collision pairs should be
accepted for a collision according to the size of Q given by

Q = wUUier . (57)

The relative frequency of real ij collisions will then be proportional to
the product QW; (the relative probability of a pair being accepted for a
collision times the number of real collisions occurring when the pair is
accepted), which is the desired relation. Selection of collision pairs
with the correct relative frequency then assures that incrementing the
global time counter as discussed above will give a statistically correct
sampliing of all collision classes simultaneously.

6.4.3 Summary of Collision Sampling in Multi-Component Mixtures

The results of this subsection can be summarized via the following
procedure for the sampling of collisions:

e Each cell has a (current) maximum vaiue ot Q, Qnax’ that has
been encountered so far in the collision sampling process.
Whenever a larger value is encountered, is set equal to
that larger valuc.

Qmax
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e Each cell has a current value ot the global time counter, tg.

e Pairs of simulated molecules are selected at random from all
moiecules within the cetl.

® For each pair, Q, (as defined by Eq. (57)) is computed.

o The ratio of Q to Qp,yx is computed, and & random variable is
generated. The pair is accepted for collision if the random
variable 1is less than that ratio. (It the pair 1s not
accepteda, then another ranadom pair is selected. The process
continues until a pair is accepted.)

e For an accepted pair, the collision mechanics are computed as
described in Section 5.

e The global time counter is incremented by WLAtg, where Atg is
given in Eq. (56).

e The process continues until the global time counter goes
peyond the overall flow time. At that point the collision
sampling is commenced in the next cell.

e Wwhen all ceills have had collisjions simulated, then the code
proceeds to the translation portion. (See Sections 1 and 8.)

6.5 Deviations from the General Procedure

There are some exceptions to the above relations which have been added
to SOCRATES in order make it more efficient. These eXceptions are
gescribed in the following subsections.

6.5.1 Cell Specific at,

Betore collisions are simulated in a cell, the mean residence time of
molecules in the cell is estimated using the ce)l dimensions and the
molecuiar velocities. When coilisions are simulated in the cell, it is
done for an increment of the global time counter that is 20% of this mean
residence time (but no less than at,). Collisions are not again simulated
in cthe ceil until the overall flow time has caught up to the global time
counter tor the cell.

The major reason for doing this is to recognize that some cells will

tena to have their molecules remain in them much longer than others. Cells
which have longer molecular residence times will tend to have molecules
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wnich experience more collisions within the cell. When the number of
collisions per molecule becomes sufficiently large, it can be assumed that
the molecules in the cell equilibrate with each other, and the equilibrium
sampling procedures described in Section 7 can be applied. Since ‘'hese
relations are much faster than direct collision sampling, it is highly
aesirable to apply them whenever they are valid.

For unsteady simulations the cell specific Aty is not applied since it
might result in a temporal blurring of the solution.

6.5.2 Relaxation of Qmax

The current value of Qu,, in a cell is reduced by a factor of 0.95 if
20 or more potential collision pairs are rcjected in a row. The rejection
of collision pairs can become the most time-consuming part of the
simulation, and a large value of Qrax exacerbates the problem. This change
means that a cel)l is not permanently penalized for a single event that once
occurred in it, but the change in Qp,y is not so great as to invalidate the
pair seicction probability. This modification can, under some collision-
aominated circumstances, result in an order of magnitude increase 1in
computational speed.

6.5.3 Maximum Time Counter Increment

Since Atg is inversely proportional to relative velocity (Eq. (56)),
when a very low velocity collision does occur, it can result in very large
increment to the collision time counter, which effectively turns off
collisions in the c¢ell for a long time. Although this is statistically
proper in the long run, it cuan result in a substantial statistical
fluctuation in the short run. The codes do not allow a collision time
increment to be greater that Aat,, the overall step that is used 1in the
solution.

The limitation on Atg is achieved by decrcasing the weighting factor

ol the collision below the weighting factor of either of the two colliding
molecules. The maximum coilision weighting factor, (W l,... is given by

1 2
Wedpax = Eﬁthn 0jjCr . (58)

- 34 -




The weighting tactor that 1is applied to a collision is, therefore, the
smailer of (W, wj, (We ) pax ! - It W, represents this value, then u
coiriision counts as W, events. In order to maintain an overall correct
simulation, the Q described in Eq. (57) is actually given by the relation

_ waLUijcr
Q - w ’ (59)
C

ana the time increment applied to the global time counter is WcAtg. (The
two molecules then have their state vectors updated as a result of the
collision with probabilities of wc/wi and wc/wj respectively.) Most of the
time W, is equal to Wi, and this procedure reduces to that given above;
however, the problem of occasional large time increments is eliminated.

6.5.4 Separation of Major and Minor Species

A problem arose when a cell happened to contain a single molecule of
one major species and all other molecules in the cell were minor species
with weighting factors considerably less than that of the first molecule.
(In treating minor species, the ratio of weighting factors may be as much
as 1000 or more.) Since a molecule cannot collide with itself, collisions
betwecen major species could not occur in suchh a cell. The result was that
the contribution of major species collisions to the overall time counter
were unobtainable; ana the entire collision time increment had to be made
up with collisions between the single major species and one or other of the
minor species. (Collisions between minor species were rare since pairs are
selected with a probability which is proportional to the greater weighting
factor ~ see above.) The result of this problem was that vastly too many
collisions were simulated between the major and minor species. This was
poth unphysical and numerically inefficient.

The sojution to the problem is twotold: 1) Logic is in the modules to
recognize when this problem occurs; and 2) The global time counter is
redetfined in such situations. The different time counter is achieved
simpiy choosing a different definition for the Dij coefficients appearing
in Eqg. (51). Rather than taking a weighted average over all collision
classes, it 1is possible to take a weighted average over just those
coliision classes which involve a collision between a major and a minor




species. If np represents the total major species number density and n;j
represents the total minor species number density, then Dij is defined for
1his case to be

Dij = ninj ’ (60)
rather than the value given in Eq. (53). The implied increment for the
giobal time counter is given by

) .
Atg h VnInJUier ) (61)

This counter is then only applied for collisions between the species
declared to be major and the species declared to be minor, but the
increment that is applied is much larger than if the weighting were over
all coliision classes. Note that collisions between minor species still
occur - they just don't affect the collision time counter. It should be
stressed that this modification is only applied for the special case of a
cell that has a single major species molecule (defined as a weighting
factor at least ten times greater than that of the other molecules). The
result of this modification was the return of the correct collision
tfrequency simulation and a removal of a substantial numerical! problem.

7. PROCEDURES FOR COLLISION DOMINATED FLOW

One of the major difficulties in the classical Monte Carlo technique
is the attainment of equilibrium, wherc the collision frequency can become
propnibitively large for a direct simulation. There are two basic
gapproaches tor this problem, and both are utilized in SOCRATES. The
equilibrium modeling is only applied if no products are being introduced
into the simulation as a result of chemical reactions. When such proaucts
are introduced, collisions are always sampled for the full time increment.
The two equilibrium approaches are described below.

7.1 Collision Cutoff Approach
This is the usual method of dealing with a collision dominated flow

field. In this method, collisions are sampled in a given ceil only until
enough have been sampled to guarantee equilibrium. Since further
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collisions only resuit in the maintaining of equilibrium, they need not be
Simuiated. It 1is necessuary, of course, to estimate the actual collision
frequency and keep proper count of the collisions (in particular the
excitations) which are not directly simulated in order to obtain the
correct collision frequency. Once a cell has had its collisions cut off in
this fashion, a flag is set for it. On subsequent calls, the equilibrium
attermath approach (described i1n the next section) is applied to the cell.
{The equilibrium aftermath approach also calculates collision frequencies
ana switches back to regular collision sampiing if it becomes too low.)

7.2 Equilibrium Aftermath Approach

it 1s possible to avoia sampling collisions altogether if it is known
that the cell is in equilibrium. This is done by calculating the total
cell energy and momentum, and then selecting post-collision velocities from
the dppropriate equilibrium aqistribution. Although the principle is
simpie, tne application is complicated by the fact that molecules in the
ce!l do not all have the same statistical weight. In some ways (e.g., the
determination of mean velocity) the statistical weight acts like an
etfective multiplication of molecular mass - the greater a molecule's
statistical weight, the greater its contribution to the mean flow velocity.
in other ways (e.g., the assignment ot post-collision thermal velocities)
the statistical weight does not affect the result - a light molecule should
generally have a large thermal velocity irrespective of its statistical
weignt.

The second ditficulty with the formulation of this approach is the
necessity for constraining the total energy and momentum to match the
pre-collision values. Hence, it is not proper to calculate the initial
energy and then simply sample from Maxwellian distributions with the same
mean energy, since such a distribution has a finite probability of
proaucing a molecule with any energy - and the net result would be an
unacceptable divergence in the cell energy and momentum from the initial
values, Both of these problems are avoided in the steps enumerated below.

The method is implemented by calculating the total momentum and energy
in the cell and then "peeling ott" one molecule at a time from the others.
The internal mode energy and energy of relative motion for that molecule
(retative motion with respect to the remaining molecules) are selected from
equitibrium distributions, except that a scale tactor which is proportional
to temperature is temporaritly letft undetermined. The process is repeated
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seaquentially until all energy moaes have been assigned values, and then the
overall multiplicative constant is chosen to match the known totali energy
of the system (thus determining the temperature).

Each molectle is then uassigned velocity components which are
consistent with the known relative velocity between it and the remaining
molecules; and then conservation of momentum determines the mean velocity
of the remaining molecules. Again, the process is repeated sequentially
until all velocities and internal energies have been assigned.

7.2.1 Conserved Quantities

The total energy and center-of-mass velocity are directly computed via
the tollowing procedure:

1) The following sums are evaluated, summing over aill the simuiated
molecules in the cell:

. <v

52 = ‘Lwlmlul . (63)

33 = Zwimivi ' (64)

84 = Zwimiwi » (65)
. 2 2 2 .

S5 = ZLWimi(ui + vl o+ wi) , (66)

and




where W;, m; and Ej; are the statistical weighting factor, the
mass ana the internal energy, respectively, of the ith molecule;

ana u;, v; and w; are its velocity components.

A |

. * * *
2) The center of mass veiocity components, u , Vv and w , are
conputed via:

*

u = SZ/SI , (58)
*
v = 83/81 (69,
and
* Sy
who= S,/8; . (70)

3) The total translational energy of relative motion between the
moiecules, E..,. can be represented by:

1 . .
E¢pp = EZiwimiL(ui - w2 4 (viy - v )2 .+ (wj - w*)z] . (71)

although it is more easily evaluated by the mathematically
equivalent expression

322 + 332 + 842

1
E = =|Sz - (72)
irn 295 Sy
4) The total cell energy is therefore given by
Etot = Ss * Egrn (73)

7.2.2 Center-of-Mass Velocity Distribution

Given that a group of N molecules is in equilibrium, it is possible to
determine the form ot the distribution function for their mass averaged
velocity, taking into account their different statistical weighting
tactors. This relation is most easily demonstrated by relating the
Maxwellian velocity distribution to the normal distribution of statistics
and then utilizing & basic statistical theorem.
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A variable, r, is distributed according to a normal disiribution it
its probability density function, f(r), is given by

r2 _
t(r) = exp(—-‘—~2-)/(¢w2m . (74)
20

where o2 is the variance of the distribution. (The distribution has been
selected with 2zero mean since the effect of non-zero means does not
influence the velocity differences which are the goal of this exercise.}) A
basic result of statistics' is that if ry 1is selected from a normal
agistribution with variance Uf and r, is sefected from a normal distribution
with variance a?. then the variable rg defined by

2
rq = ar1 + Brz » {75)
will follow a normal distribution with variance og where
2 _ 2.2 2 2 .
o3 = a0y + B P . (76)

If it 1is recognized that a normal! distribution is the same as the
Maxwellian distribution for a single velocity component, then this result
implies the distribution for the center-ot-mass velocity components
obtained by averaging over N molecules as in Egs. (68) ~ (70). The result
is that this mean velocity foilows a Maxwellian velocity distribution
appropriate to a "super” molecule whose mass, mg, is given by

N N
h

mg = (Zwlmi)zf(wami) : (77)
1=1 i=1

(The temperature ot the distribution, ot course, is the same as that used
to select the constituent molecular velocities.) Although Eq. (77) is not
intuitively obvious (to these authors, anyway), it does yield some expected
limits. If all of the weighting factors are the same, then mg is the sum
of the masses ol the individual molecules. However, if one molecule's
weighting factor 1is much larger than the others (resulting in the
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center-ot-mass velocity of the group being essentially equal to that
molecule's velocity), then the distribution of center-of-mass velocity is
the same as the distribution for that one molecule.

7.2.3 Molecular Relative Velocitv Distribution

The relative velocity between an individual simulated molecule
(referrea to as "“moiecule j") of mass m 5 with respect to the center-of-mass
velocity of N other molecules will, therefore, have the same distribution
as the relative velocity betweun that molecule and another molecule of mass
mg. it is a well known result that this wvelocity distribution is a
Maxwellian distribution appropriate to a molecule with a reduced mass, Hjs»
given by

mms (78 )

Mis m+Mg

Put in terms ot the chi-square distribution which is used extensively in
the Monte Carlo model, u?s (the square of the relative velocity between
molecuie j and the center-of-mass velocity of the other N molecules), can

be expressed

KT
s __ujsxtj . (79)

Lo I

where th is a variable selected from a chi-square distribution for the
reievant three translational degrees of freedom. tk is Boltzmann's
constant, ana T is the (as yet undetermined) temperature. ]

7.2.4 Translational Energy of Relative Motion
The total transiational energy of the molecules (which can be
expressed as in Eqs. (62) - (71) above, summing over alil N+1 molecules) can

be aigebraically recast in a form which specifically shows the contribution
of relative motion between molecule j and the N other molecules.

Speciticaily,

1
E = EN + z'ﬂjllis . (80)
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In Eq. (80), Ey is the translational energy which would result it only the
N moiecules were included in the previous sums, and EN+1 is the wvalue
obtained with all of the molecules. The factor in the ditterence, nj. is
the "reduced weighted mass" between molecule j and all of the other
molecutes, 1.e.,

S,W.m,
n; = ol (81)
51+meJ

where S; is as defined in Eq. (62), applying the sum to the N remaining
molecules. It 1is crucial to note that mg, as defined in Eq. (77),
determines the distribution of relative velocities between m and the other
N moliecules; but nj, as defined above, determines the amount of energy
associated with that relative velocity. Combining Egs. (79) and (80) gives
the translational energy contribution, EtJ' as

B o= (Rkr)—dx 82)
o7 et gttt (

Note that this etfecctively gives a weighting factor associated with the
translactional energy contribution of molecule j of nj/ujs.

7.2.5 Determination of Temperaturc

The 1internal energy associated with molecule j, Eij' can be
represented simply by

: _ 1 .

where le is a variable selected from a chi-square distribution with the
number of aegrees of freedom appropriate to molecule j's internal modes.
As discussed above, this process is then repeated sequentially for each
molecule in the ceil. Note that "N" in the above relations refers to all
remaining molecules which have not had their energies determined yet. This
means that mg, for instance, changes with each molecule since it is defined
via a sum over these remaining molecules. The last molecule has no
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transiational energy of relative motion associated with it since there are
no remaining molecules for it to be moving with respect to. It does, of
course, have internal energy.

Summing ail of tue Etj and Eij and equating them to the known total
energy Ei .. (as given in Eq. (73)) then determines the temperature ot the
system. [t is noteworthy that this temperature is not determined by the
total energy of the system, but also by the statistical sampling process.
This is consistent with the tact that any temperature could result in the
particular observed velocities; although some temperatures are much more
i1kely to produce them than others.

Once the temperature 1s defined, then the sequential relative
veliocities squared u?s (Eq. (79)) and internal energies (Eq. (83)) are
geterminea. It is then a simple matter to go back and apply these values
to select ingividual molecular velocity components via the same procedure
describea in Section 5.

7.3 The Numper of Collisions Required to Achieve Equilibrium

The number of collisions requirea to achieve equilibrium depcnds on
the modei being employed and the criterion for equilibrium. (Equilibrium
is approached asymptotically and, as such, could be regarded as an ideal
limit wnich is never realized.) The model being employed, as discussed in
subsections 2.4 and 5.3 is that of Ref. 4. In this “"statistical collision”
moael, a fraction, a, of the collisions are taken to be “perfectly
inelastic”; that is, in such collisions all transiational and rotational
cnergy ot the colliding molecules is made available for distribution to the
post-collision state vectors, taking into account the number of
translational and internal degrees of freedom. The rest of the collisions
are taken to be completely elastic, with no interchange taking place
between the transliational and rotational energy modes. The parameter of
the model, a«, should be chosen to match available data for rotational
reraxation.

=~

Within the context of this model, the question to be addressed is how
many cotlisions are required in a cell before the mode) predicts that it is
essentially in equilibrium. The question can be made independent of « if
it is phrased: "How many inelastic collisions per molecule must be
simulatea before the cell can be considered to be in equilibrium?”. This
question is suitable for direct investigation with the model, and a test
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calcuiation was performed to answer it. The test calculation indicated
that the equilibration is 90% complete atter approximately 3.08 inelastic
collisions {on the average) for each molecule. This seems to represent u
~egasonable point at which to say that turther collision simulation is
unnecessary, although the cutoftf is of necessity somewhat arbitrary. This
number of inelastic collisions serves as 4 useful benchmark in the
comparison of the colilision cutoff and equilibrium attermath approaches,
ard it alse serves to define when the application of the equilibrium
atftermath approach is valid.

7.4 Method Comparison

Test runs were run where the collision cutoff approach was utilized
tfor 3.08 inelastic collisions per molecule. (Since & = 0.2 was used, this
corresponaea to about 15 total collisions per molecule.) The time required
to compute the relaxation via collisions was then compared to the time
required to utilize the equilibrium aftermath approach. The result was
that the equilibrium aftermath approach was almost an order of magnitude (a
factor of Y) faster in achieving the same result. This ratio will no doubt
vary with computer and specific calculation being performed; but it is
nighly likely that the equilibrium attermath will always come out
considerably faster. It is for this reason that the method was implemented
in SOCRATES.

8. MOLECULAR TRANSLATIONS

As discussed in Section 1, an essential element of the direct
simulation Monte Carlo method is the periodic advancement of simulated
moiecules dlong their trajectories. Formally, this 1is accomplished by
upgating the position anda velocity elements of the state vector. The
specitic procedures tor doing this depend on the coordinate system in which
the state vector elements are represented.

8.1 Molecular Translations in Cartesian Coordinates
in Cartesian coordinates, the translation is very direct. Let x, vy,

anag z represent the position coordinates and u, v, ana w the corresponding
velocity coordinates. [If initial and final values of the state vector are
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represented by 4 0 and 1 subscript respectively, then the updated state
vector elements corresponding to a transliation through a time step At are

riven oy
Xy = Xy *updt (84)
Vi = ¥yg * vgot , (85)
z = zg * wybt , (86)
1.7 Y (87)
Vi VYo (88)
ana
Wi = W, . (89)

8.2 Molecular Cloning

Wiien a simulated molecule is translated from one cell to another, the
welgnhting factor for that species will generally be ditfferent in the new
cetl . Since 1t is the number of real molecules rather than the number of
simujated molecules which must be preserved when crossing cell boundaries
{scatistically, at least}, it is necessary to correct for the distinct
welgnring tfactors (see Subsection 3.4).

{f the weighting factor before translation is Wy, then the simulated
molecule represents that many real molecules. It the weighting factor in
the rew ceil is W;, then W,/W, simulated molecules would be required to
represent the same number of real molecules in the new cell. If this ratio
were a whole integer, then this could be accomplished by introducing that
many "clones” of the simulated molecules in the new cell. That is, Wy/Wy
simuiated molecules would be placed in the new cell, all with the same
state vector.

When the number W,/W; is not an integer (the usual case, of course},

then the cloning must be done on a statistical basis. So, for instance, if
Wo/W, were equal vo 2.7, then 30% of the time two clones would be produced,
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ana 70% ot the time three clones woutd be proauced. Note that the ratio
may be less than unity, ana the molecule may not be introduced into the new
cell at all. (In which case the molecuie 1s removea from the simulation.)

Cioning 1s 4 necessary evil inherent in a system with spatially

varying weighting factors. It enables such a system to maintain the
statisticalliy correct flux of mass and momentum across cell boundar:es, but
it misrepresents the tlux of randomized or thermat energy. This can be

seen by an extremc case where a very large number of clones is produced
when a simulated molecule crosses a cell boundary. The resulting molecules
in the new cell have the correct mass and momentum flux, but since they all
have precisely the same velocity they have a nuil relative velocity and,

theretfore, a zero temperature. It the weighting tactors 4are not too
ditterent between adjaceint cells, then the errors introduced by this
process are acceptably small. However, 1t does mean that one cannot

arbitrarily 1improve statistics in one portion of the solution region by
selectively reducing the weighting factors there. This was a difticulty
which was encountered in the early stages of the direct simulation Monte
Carlo method while +trying to improve statistics dlong the axis ol
axisymmetric simulations, since the cell volumes (and, therefore, the
sampie sizes) tend to be smallest on the axis.

As was the case for simulatea molecules produced via chemical
reactions, it Is possible for the weighting factors between successive
cetls to be so different that a prohibitively large number of simuiatea
molecules woula be requirea to produce the same number of real molecules.
The codes sense when a disproportionate number of simulated molecules are
being proauced for a given species and cell and adjust the weighting tactor
automatically. As the weighting tactor 1s 1increascd, a proportionate
fraction of molecuies of that species and cell arce removea from the
simulation in order to Kkeep the number of rcal molecules properly
represented. This process enables the weighting factors to seck their own
proper level without a priori knowledge of the solution. (Periodically,
the cells are c¢xamined to determine 1if a certain species has Dbeen
underrepresented in terms of its number of simulated molecules. If this is
touna to be the casc¢, then the weighting factor is decreased, allowing
welghting factors to float downwards as well as upwards. [t is the danger
of weighting factors being too small, causing an overflow of code
daimensions, which is most critical, however.)
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9. INITIAL AND BOUNDARY CONDITIONS

g.1 Initial Conditions

Since the direct simulation Monte Carlo method is inherently an
unsteasdy technique, an initial state must be specitfied in order to advance
the solution. For situations where a steady state result is desired, it is
obtained as the long-time solution to an unsteady problem. In this case
the initial conditions have no effect on the eventual solution, butl they
may well have an impact on the speed with which that state 1is achieved.
For steady state solutions, SOCRATES simply starts with an evacuated
solution region. TFor unstcady solutions, however, it is necessary to start
with a molecular distribution which is representative of the conditions at

the start of the desired simulation. For SOCRATES these conditions
correspond to a uniform flow with the translational and internal modes
being in equilibrium. The specitication of the initial conditions for

unsteady runs, therefore, involves determining the state vector elements
consistent with this condition for the desired number of molecules.

9.1.1 Number ot Simulated Molecules and Their Weighting Factors

The desirea number of simulated molecules for each species in each
cel!, M,, 1s an input quantity. {Typically, simulations aim for a total
number ol moliecules per cell in the neighborhood of 20.) Given the inilial
number density to be simulated for a species, nj, (which will have been
automatically converted to internal dimensions - sce Section 3) the
weighting factor for species 1 in a given cell is simply

W, = — (90)

where V 1s the cell volume. If a species is not initially present in a
cell, then it 1is assigned an initial weighting factor of 2zero. It
simulatead molecules come into the cell, the weighting factor from their
place of origin will be used to initialize the weighting factor in the
cell. As the solution proceeds, the weighting factors are automatically
adjusted to keep the average number of simulated molecules of each species
equal to M, in each cell.
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9.1.2 ([nitiatl Posttions

The 1nitial molecutes assigned 10 a ceil should have an  cquat
proovaniiity of being piacea in any voiume element of the cell. For tihne
asxanearal cerls ol SOCRATES, this simply i1nvoives selecting each ol the
pasition clements at random from the range approprilale to tne celil 1In
question. That is, the X position is selected via the equation

X_ .. ) , (91)

= + -
X xmln ﬂ(xmax min

X, . e siti ’ > ~faces ~ the ce i
wiere x .. ana X .. are the positions of the x-tfaces of the cell n

question. The other position ciements are selected analogousiy.
9.1.8 Iritiai Velocity Components
The tnermal velocity components for a molecule in translationat

equilipbrium (neglecting, for the moment, any mean flow contribution) shouid
be sclectea ftrom a normalized Maxwellian velocity distribution, fo(v),

given by

fy = @ expi-(av)i/~T (92}
where

« = wm/(2RGT_) . (93)

m 'S (ne specles molecurar welght, RO 1s the universal gas coustant and Te

' the (emperature. Equation (93) applies ftor each of <the mroieccular
veloclty components and must be sampled three vtimes for each molecutie that
comprises the 1nitial state of the simulation. A methoa for waircctly

sampiing from this aistribution is

A, = i#-l()g(ﬁ) : (95)
v = A,sin(A;) . (96)




Atter the thermal velocity components dre determined for each molecule,
then any mean flow velocity is simply added on. The velocitics are then
transformea to internal units.

9.1.4 Initial Internal Energies
The only remaining element of the state vector to be specified is the

internal energy. Internal energies for a gas in equilibrium are
distributea according to the normalized distribution function f[ given by

£8/2 loxp(~€/2)
28/2p(g/2)

t =

1 {97)

where & represents the number of internal degrees of freedom for the
species in question, T is the gamma function, and € is a dimensionless
internal energy, 1.e.,
2E

ROTm ’

(98)

where E; is the internal energy. Equation (97) is a representation of the
chi square distribution for U degrees of freedom; procedures for sampling
from this distribution are given in Appendix A.

9.2 Source Boundary Conditions

The introduction of source molecules into the simulation is a boundary
conaition which dependas on the specific model for the source in question.
SOCRATES inciudes a “"core flow" source, which describes the contamination
thal resuits from the scattering ot the tlow from a thruster back onto the
shuttle. For this source, it is important to have a description of the
main exhaust flow away from a thruster. (This is to be contrasted with a
source which describes the direct contamination of surfaces via impact of
exhaust pases. Since the thrusters are not pointed directly at shuttle
surtiaces, it is the small portion of the tlow which leaves the thruster at
a targe angle from the exhaust centerline which is important in this case.)

The plume gascs expand upon leaving the exit plane and adopt an
essentilally raaial flow protile over a distance which is on the order of
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ex1t plane dimensions. Since this distance is small compared to the length
scales of the interaction of the piume with the atmosphere, 1t is
appropriate to replace the nozzle by a point source of exiaust molecules
traveiing at their thermoaynamic limiting speed with an undisturbed number
aensity aistribution given by

n, = —tle) (99)

where B gives the axial! number aensity decay and o represents the angie
from the thrust agxis. The r appcaring in Eq. (99) is the spherical raaius,
grving the total aistance tfrom the source. The particular form tor f{e)

that is usea in SOCRATES is an asymptotic form of that proposea by Brook,’
nimety
r(e) = exp{—szl - cos{e)]} ' {100)
wnere
A2 - —— (101)
P Cyp
. 1 Je , o:
Crp = 2[1+cos(en)1u L1+ 2) ) (102}
m e
u
-2 = 1+ 2 5178 (103)
Un (Y - 1)M,
ana
1 2“(:
= = —_— . 0
B 2‘"neAe)\ s (104)
In the above relations, ug, Ms» ng anu A, denote the exi1t velocity,

Mach number, number density ana area, respectively; - is the nozzle

7. Brook, J. W., "Far Field Approximation for a Nozzle Exhausting into a
Vacuum”, Journal of Spacecratt and Rockets, 6, 626 (1969).
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aivergence halt angle, and u, and Y are the thermodynamic limiting speed
ana the ratio of specitic heats.

fn 4 sorution time step &g, NaUgAydt, real molecules are introduced.
Each morecule 1s assignea an angle 6 which is chosen to be consistent with
£q. (100) via

2] = cos’l(l + Cylog(1l - CyB)] , (105)
wnere
1
Cy = — (106)
1 )‘a
and
Chy = 1- exp(—zxz) . (107)

An azimuthal angle is selectea at random for the molecule, and then
the resuitinpg velocity is represented in the basic Cartesian coordinates
utilizea by SOCRATES. The molecule is then advanced from the source
appropriate to a speed of up and a time increment which 1is a random
traction of Aty. The process 1is repeated until the proper number of

simuiatea molecuies of each exhaust species have been introduced.
9.3 Atmospneric Boundary Condition

The atmospheric boundary conaition for SOCRATES is that molecules
snouta be introauceu into the solution region from the outer boundaries in
sucn 4 way as to sinrulate the undisturbed ambient flow outside of the
so!lution region.

9.3.1 Molecular Flux Across a Surface Element

The relations for molecular flux across an infinitesimal surface
etement gre given in Ret. 1. I1f q is the molecular flux (molecules per
unlt drea per unit time) crossing a given surface element, then (¢ is given
by

Ng » _
Ex(exp(~w }/~NT o+ wilrert(w)]) , (108)

-
|

~5]_




wnere

A = “m/2R,T , (109}
ana
w = Au cos(e) . (110}

In these relations, n, ana T, represent the ambient number density and
temperature for the species in question; m represents its molecular weight;
u, represents the mean fiow veliocity; and 6 is the angle between the inward
surface normal ana the mean flow direction. The flux given by Eq. (108} is
non-zerao for all values of e, reflecting the distribution of molecular
velocities. However, it does become exponentially small for large negative
w. (Note that these relations must be applied on a species-by-species
basis; each species has a different spread in its velocity distribution by
virtue of its nifferent molecular weight.)

The application of Eg. (108) to the flat surtaces comprising the
SOCRATES outer boundary is direct, since e does not change along the face.
The total number of molecules to introduce for a time step of Aty is simply
qatgA, wnere A is the area of the flat face in question. Since the tiux 1is
constant over a frlat face, each position on the face is equally likely as a
pvint for molecular entry. Hence, for a flat face, the starting molecular
poesition can be simply obtained by selecting a point at ranaom on the face.

9.3.2 Incoming Molecular Velocity Components

For each molecule that is introduced, a local orthogonal coorainate
system is set up such that one direction is in the direction of the inward
surface normal. Velocity components are first determined in terms of this
tocal coordinate system and then transformed to the main code coorainate
system. In the local coordinate system, the velocity components paraliel
to the surface are determined as aiscussed above ftor molecules in the
1nitial condition. The inward component of velocity must be sclccted in
proportion to the distribution h(v) given by

h(v) = v expi{-la(v - <v>)]2} , {111}
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where <v> is the component of the mean flow velocity in the inward normal
airecrion ana a« is as given in Eq. (93). It is possible for <v> to be
negative, but all incoming molecules must have a positive v value by
agefinition. Hence, this distribution is only sampled for positive values
of v. The sampling is done via the acceptance-rejection technique.

10. STATISTICAL SAMPLING OF OUTPUT
10.1 General Considerations

It is safe to say that the molecular state vectors as they exist in
the computer do not comprise the usual desired output of the procedure.
With rare exceptions, it is the macroscopic quantities such as temperature,
aensity, mean ftlow velocity, etxc. wnich are ot interest - not the
microscopic quantities represented by the state vector of an individual
simuiated molecule. The generation of the desired output requires that the
macroscopic quantities of interest be represented in terms of statistical
sums o! the available microscopic gquantities; and it is the main purpose of
this section to present these correspondences. All sums are kept in terms
ot ‘“"real" moiecules and events, i.e., the current weighting factors are
tnciuged in the sums. This is essential since the weighting factor
determines the statistical importance of a given molecule. Since the
welghting factors are dynamically and unpredictably adjusted as the
solution progresses, it would not be possible to go back and add in the
etfect of weighting factors a posterijori.

In general, it must be decided ahead of time exactly what output is
gesireda from the code, and, therefore, what statistical sums should be kept
to generate it. There is a vast amount of potential information in the
stmuiation, and it is not reasonable to store all possibly interesting
quantities in all runs. On the other hand, it is wasteful to completely
rerun a case just because the user decides there was an additional quantity
he was interested in. The selection of output for a given run, therefore,
unavoiaably requires user judgment. Once the user has decided upon the
requirea output, the determination of which statistical sums are required
's done automatically by the code. Care is taken to make sure that a
statistical sum is not duplicated internally if it is required by more than
one requested output quancity.
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Some initial words of caution are requirea. By its nature, the direct
similation Monte Cario method works with far fewer molecules than nature
does, and it, therefore, exhibits considerably greater stutisticai
variation in its macroscopic predictions. To reduce these variations, the
coae is run repeatedly for the same case, increasing the statistical base
trom which the macroscopic output is derived. Useful resuits can usuaily
be obtained with a modest computational etffort. However, this statement
must be tempered by a realization ot the convergence rate tor Monte Cario
sampling. Basically, the statistica! error in the output converges uas one
over the square root of the sample size (or run time}. Hence, it @
sotution looks good, but the user decides he wouid like one more
signiticant digit (i.e., he would like the statistical error to be reduced
to 0.1 times its current value) it would require that the run tire be

increased by a factor of 100! It can be seen that the desire tor more
accuracy can quickly turn the most etfficient code into a money pgobbiing
nightmare. When using a Monte Carlo technique, one must accept some

statistical scatter in the output.
10.2 Sampliing of Instantaneous Volumetric Output Quantities

[nstantaneous volumetric output quantities, such as aensity,
temperature and velocity, can be determined by examining the molecular
state vectors at a particular time in the simulation. The code pauscs 1n
the simulation and uses the molecular state vector elements to auad values
to the statistical sums appropriate to the various cells and the particular
time that it paused. It then procecds with the simulation until the next
sampiing time. As the code goes through its successive runs, it stops 4t
the same points in the simulation every time and aads to the statistical
base tor the sums. {For steady state cases, 1t simply does it repeatealy
after the initial transient has died down.) The items listed below, with
their statistical definitions, are selectable as output requests 1in
SUCRATES. Summations are pertormed over all applicable simulated

motecutes, which include N separate runs.

run

e TOTAL NUMBER DENSITY

51
n — (112)
VNPHR

e MEAN MOLECULAR WEIGHT




an
- |

® X VELOCITY COMPONENT

e v VELOCITY COMPONENT

v - s
y 86

o z VELOCITY COMPONENT

o OVERALL TRANSLATIONAL TEMPERATURE

2 2, .2
1 S3° *+ $4° + S5

3RyS; o2~ So )

o TRANSLATIONAL TEMPERATURE IN jTH DIRECTJION

e INTERNAL MODE TEMPERATURE

25,

RgS10

wnere the indicatea sums, S are defined by:

K?*
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(114)

(115)

(116)

(117)

(118)
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Sl = Z wi , (120)
i

. y 2 .

Sy = ZE wlml(v11 + "21 + vgi) , (121)
i

83 = Z Nimivxi , (122)
i

54 = Z w1m1Vy1 , (123)
i

35 = Z Wimivzi . (124)
i

bb = Z wimi , (125)
i

Sy = Z wimivii ) (126)
i

58 = Z Wlmlvjl . (127)
1
i

and

Sy - Z Wik, . (129)

i

With the exception of Eq. (113), all of the above quantities can also be
detfined and calculated for any specified species. The sums are the same
except that only molecules of that species are considered. Before printing
output quantities, they are always transformed to standard dimensions from
the internal dimensionless variables.

- 56 -




10.3 Sampling of Time Averaged Output Quantities

Some aaditional quantities o! interest are not sampied at a separite
sumpling time das aescrivea above, but rather as the simulation evolves.
Examplies of such quantities are coilision rates, reaction rates, mean
veirocities between molecules, etc. For the most part, tnese quantities
aepend on the relative suate of more than one type of molecuie, ana they
arce ny thelir nature expressea as average vdalues over a finite time
intervar. The formulas for calculating these quantities are no more than
event counters, ang will not be included here. The following quantitics
are currently avariable as output:

] Mean Relative Velocity Between any Two Species;

° R.M.S. Deviation ot Mean Relative Velocity Between any Two
speciles;

(] Mean Proauct of Cross Section Times Relative Velocity Between
any Two Speciles;

® Coliision Ratec Between any Two Specles;
° Reaction Rate for any Chemical Reaction;
° Reaction Rate for any Photochemical Reaction;

[ ffiux Rate for any Species on any Surface Element.

The sampling tor ail but the last of these quantities occurs in the
coirislon s:imulaticen routines. As pairs are considered as possible
collision partners, statistics are kept to generate the first three
quantiiies. Statistics on collisions and reactions are kept as they occur,
ana the rast quantity 1s determined in the molecule advancement routines.

11. SURFACE DEFINITIONS AND INTERACTIONS

An cssential efement of the contamination problem is the presence of
so17'a surtaces in the flow field. This section discusses how the surfaces
are representea ana how the interactions of the gas molecules with the
stirtuces are recegnized, simulated, and recorded.




11.1 Snuttle Representation

A sumplitred version o!f the shuttle bhas been constructed. This moael
wis 1ntentionally abbreviated for the initial computations. The mogel
aqescription is simply a data file, which is easily replaceu by availabie,
more aetalled, shuttle models. The initial model for the shuttle geomctry
was gesigned to form a completely closed (i.e., no "holes")},
non-vverliapping surtace which approximates the shuttie geometry with a
minimum number of surface elements. The surtace elements are simple
geometric shapes such as rectangles, triangles, disks, cylinders, and
cones. This first model employs tour surface types with a total of 11
surface elements. [In particular, the wings are represented by triangular
ptanes which currently have no thickness, but necessarily have a top and
bottom. The tail is modelea using a combination of four triangular pianes,
the shuttle body as the outer surface of a cylinder, the shuttle nose as a
cone, and the att end of the shuttle as a disk. The model is speciftied in
cartesian coordinates with the origin placed along the axis of the cylinder
ac the center of the shuttle. This preliminary mocdel is shown in front,
top, ana side views in Figures 4 - 6, respectively.
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Figure 4. A Frontal View of the Crude Shuttle Model Designed for
Testing of the SOCRATES Moadel.
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11.2 Determination of Surface Intersections

The 1i1nteraction of species with the shuttle is a crucial portion of
the contamination model, and it hus two distinct facets:

1) Caiculating the point in space ana time at which a
contaminant moiecule makes contact with a shuttle surtface;

2) Characterizing what happens to the molecule after contact
(e.g., adsorption, specular reflection, diffuse reflection,
etc.).

This subsection deals with the development of an aigorithm for the
first point above. The calculation of an intersection point, while
conceptuaily straightforward, 1is a potential saurce of considerable
computational etffort. SOCRATES can calculate the intersection point 1in
space and time for a molecule starting from an arbitrary position and
velocity for each of the simple geometric shapes used in the shuttile
gescription. The intersection routines also retura the locai triple of
unit vectors at the intersection point which is useful for the calculation
of surtface reflections. The procedure will be illustrated for the case of
a rectangular surtace element. The surface, as shown schematically in
Figure 7, is defined by the following quantities:

-

a) A vector, rg, giving the absolute location of the “key
vertex" of the rectangle in code coordinates;

b) An orthonormal triple of wunit vectors which define the
orientation of the surface. i, and iy define the directions
from the Key vertex to the two adjacent vertices of the
rectangle and ig is the outward surface normal. A right
handed coordinate system is used, so

iy = I; x1, (130)
c) The lengths, %, and 2,, of the two sides. (See Figure 7.)

[t a molecule has a position, ;m' and a velocity, vp, then the
analysis for intersection proceeds as follows:
1) The component in the 53 direction of the molecule's position
ana velocity relative to the Kkey vertex, X5 and vy, are
computed via

X3 = ig+(Tp-Tg) (131)




2)

3)

4)

ana

V3 = -{3'\7'“ . (132)

In order for an intersection to take place on the proper side
of the rectangle, x4 must be positive and v, must be
negative. If these criteria are not met, no further analysis
is performed.

it the above criteria are met, the intersection with the
plane or the rectangle takes place at a time increment, At;,
given by

X
Ati = - _3 . (133)
V3

The position of the intersection point, X,; and Xy;, relative
to the key vertex is then given by

ana

Y

e,

KEY VERTEX

Figure 7. An Illustration of the Quantities Used to Calculate a

Molecuiar I[ntersection with a Rectangular Plate.
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le = iz‘(rm + Ativm - [‘S) . (135)

5) An intersection with the rectangle occurs if and only if (0 <

The proccdure for the other surface types is not given here, but it is
quite similar. Each surface is defined by a locatian vector, a triple of
orientation vectors, and a few pieces of auxiliary information which are
specific to the surface type. The use of simple geometric shapes atlows
the checks for intersection for all of the surfaces to be maae
expeditiously.

There will be thousands of molecules in a simulation, and each one of
these molecules is advanced along its trajectory at every solution time
step.  Some check for intersection must be made for each molecule at every
time step. The shuttle 1is modeled as a combination of several simple
surfaces. Although the initial model does not involve a large number of
surfaces, it is an obvious growth path for the contamination model to use a
more ana more sophisticated model of the shuttle itself. (Other models®
have used hundreds of distinct surfaces to describe the shuttle.) Each
molecule may be checked for possible intersection with every surface
element at every step. It is not even valid to stop checking for
intersections when one is found, since it is the first intersection point
along the molecular path that is the one of interest; there may be more
than one mathematical intersection. Hence, it 1is desirable to have an
algorithm which does not suffer greatly from a large number of surfaces.

A concept to speed up the calculation of surface intersections was
impiementea. An element was added to the state vector to indicate the time
at which a given molecule will experience a surface collision if its
current trajectory is not altered. The elcment is usecd as follows:

1) Whenever a molecule is introduced into the simulation, this
element is set to zero. This serves as a flag indicating
that a possible surface intersection has not vyet been
calculated for this molecule.

8. Hetrick, M. and Strange-Jensen, D., "Shuttle Computer Model for On-
Orbit Contamination Analysis", Proceedings of the 10th JANNAF Plume
Tcchnology Meeting, CPIA Publication 291, 175 (1977).
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2} During collision sampling, whenever a molecuje has its
trajectory changed, the state vector element for surtface
intersection is reset to zero. This flags the molecule to
have its possible surface intersection recomputed when it is
aavanced along 1ts trajectory.

3} The routines which advance a molecule along its trajectory
examine this element. If it is zero, then all surfaces are

checked for possible intersection. If an intersection is
found, then tne time at which the intersection will take
pitace is put in the state vector element. If 1t is

geterminea that the current trajectory will notl intersect any
surtaces, then the value of 1029 (a computer approximation
for infinity) is put in the element.

4) If it is Known that a molecule will not intersect a surtace
within the time interval corresponding to the molecular
aagvancement, then the molecule is simply moved along its
trajectory without further checking of surtfaces. This will
pe the case for the large majority of molecules which are
inspected.

5) If a molecule does intersect a surface within the current
time interval, then it is advanced to the point of
intersection. The state vector corresponding to the
post-refiection conditions are calculated, and the element
corresponding to surface collision time is reset to zero.
The molecule is then advanced along its new trajectory for
the remainder of the time interval, allowing for any new
reflections which may occur.

Another concept that has been developed for speeding up the
catculation of surface intersections is to surround many surface elements
with an artificial surface such as a sphere. If a molecule starts on the
outs:de of the sphere and doesn't penetrate it, then it cannot hit any of
the surtace elements within the sphere. In this manner, the calculation of
intersection for many surface elements can frequently be replaced by the
calcuiation of one intersection. (If the sphere is penetrated, of course,
then the detailea calculations must then be carried out. The expectation
is, however, that a large traction of molecules will not need the detailed
analysis.) This concept wiill be implemented in future code versions if
computationally required.




11.3 Surface Reflections

Routines were written to describe a diffuse reflection of a4 moiecule
from a surtace after complete accommodation. This is felt to be the most
reasonable physical model, so it is the natural initial choice. Other
options wiil be added as the model is expanded.

11.4 Surface Statistics

The purpose of a contamination code cannot be served unless the flux
to, and buildup of, contaminants on the surface elements can be described.
The ability to keep statistics for species fluxes on the various surtace
elements is part of the code. The requests are input with the surface
element definitions and involve listing the species for which surface flux
information is desired for the given surface element. The code
automatically sets up the required storage location, advances a counter
whenever a molecule of a selected species strikes the surface element, and
gencrates output to show the derived species flux. As part of this
calculation, it was necessary to calculate the areas of each surtace
eiement, so the derived flux can be given as a number of molecules per unit
time per unit area.

11.5 Interface of Shuttle Model with Calculational Grid

The melding of the three-dimensional Cartesian cell grid structure
with the arbitrary geometry of the space shuttle orbiter {or, more
generaily, any spacecratt) posed a problem. The difficulty arose trom the
fact that the cell structure is not molded around the orbiter, su the
boundaries of the orbiter do not correspond to cell boundaries.

The cells are used for two purposes in the simulation: 1) to provide
pusitions for flow field output quantities and 2) to define the location of

possible collision partners for molecules. For either purpose, but
especially for the second one, it is desirable that macroscopic properties
ao not change appreciably across the cell. This 1s because the only

spatial requirement on two molecules to qualify as collision partners is
that they lie within the same cell; if the cell is uniform, then it is
argued that a sample molecule could equally well be found anywhere within
the ceil, and its precise location in the cell is ignored in the collision
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sampling process. (This assumption is not made arbitrarily, of course; it
results in a substantial computational simplification. See Section 6 for
aetails.)

There is a problem with this assumption when pieces of the shuttie
penetrate into a cell. The general collision sampling procedure would
allow, for instance, a molccule above a wing to collide with a molecule
oeiow a wing. [t is an inherent contradiction to assume that the contents
ol a given cetl are uniform and that a piece of the shuttle penetrates the
cell since the shuttie piece defines a length scaie on the order ot celt
aimensions.

The resoiution that was achieved was to analyze the cell and shuttle
geometrles to tag those cells which contained pieces of the shuttle and to
cisailow colilisions in those cells. As the cells become smaller, the
negiected collisions become insigniticant, so this is formally a source of
error assoclated with finite grid size (an inherent part of any such

carcuiation). [t was judged better to not allow the very small number of
iegitimate collisions in these cells than to ailow momentum transter
petween molecules separated by a solid surface. It 1is important +to

emphasize that this approximation only has to do with molecular collisions.
Direct contamination trom a source to a surface still occurs, since it has
nothing to ao with the cell structure at ail.

11.6 Back-To-Back Surfaces

A shuttle surface such as a wing is considered to have negligible
thickness in the first shuttle model, so it is modeled as back-to-back
pianar segments; one for each of the two outward normal directions. Due to
the negiect of surface thickness, when a molecule intersects with such a
back-to-back surface, it can potentially bounce back and forth between the
two surfaces inaefinitely without ever moving. The code rccognizes this
situation and disallows it.

12. SAMPLE CALCULATIONS
12.1 Case Descriptions

in order to check out the code and demonstrate some of its current
apabilities, sample calculations were undertaken. The calculations werc
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for cases with the simplified shuttle model flying at altitudes of 200,
250, ana 300 kilometers at a velocity of 7 km/s. The shuttle was taken to
bc flying at a normal aircraft orientation (i.e., nose into the oncoming
stream) and firing an RCS thruster upward from its nose. The geometry of
the calculations, with the coordinate system, is depicted in Figure 8.
These coordinates are important for the understanding of subsequent
results.

>
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Figure 8. A Schematic of the Sample Shuttle Problem Showing the
Coordinate System and Orientation of the Calculation.
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The calculation: were performed for a steadily firing engine of 860

pounds thrust, with an exhaust composition as shown in Table 2. This
composition was chosen to show the specific effect of exhaust species
molecular weight on the development of the contamination cloud. Hence,

light (H,), medium (H,0) and heavy (CO,) molecules were explicitly carried
in the simulation, and all other species were grouped together into a
specics called "Other”, with a molecular weight given by the mean of all
the remalining exhaust species.

Table 2. Exhaust Composition for Sample Calculations.

Species Mol. Weight Mole Fraction
Hy 2.00 0.1800
H20 18.00 0.3284
C02 44.00 0.0472
Other 27.35 0.4444

The atmospheric and calculational parameters used for the three
altitudes are shown in Table 3. The mean free path is actually a code
output wvariable, but it is an important reference quantity so it is
inciuded in the table. It should be noted, however, that this mean free
path is for the undisturbed atmosphere, and the plume-atmosphere
interaction region is characterized by a smaller value,

An artifice was used to get better statistics on the atmospherically
scattered molecules. An unscattered and sScattered version of each species
(H,(U), Hy(8), etc.) was defined, and gas Kinetic reactions of the form:

etc. were used. Since the contaminant source introduced unscattered
molecules, the flow tield level of H,(U), for instance, then corresponded
to the portion ot the molecular hydrogen which had not yet experienced a
cotlision, since any collision would result in the H,(U) being transformed
into HZ(S). Similarly, the HZ(S) represented the density of scattered
hydrogen, and the total hydrogen density was simply the sum of HZ(U) and
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Table 3. Atmospheric and Calculational Parameters for
Sample Calculations.

Altitude (km)
Quant.ity 200 250 300
Total Density (molecules/cms) 7.2x10° 1.9x10% 6.5x108
0O Mole Fraction 0.58 0.74 0.85
N, Mole Fraction 0.42 0.26 0.15
Temperature (K) 855. 941. 976.
Mean Free Path (m) 325. 1410. 4540.
Minimum X (m) -500. -3000. -5000.
Maximum X (m) 2000. 6000. 10000.
Minimum Y (m) -1000. ~-30600. -5000.
Maximum Y (m) 1000. 3000. 5000.
Minimum Z (m) -500. ~3000. -5000.
Maximum Z (m) 2000. 6000. 10000.
Number of Cells 2700. 3888. 3888.
Hz(S). The aavantage ot this artitice is that it allows the contamination

trom scattered species to be calculated, even though the unscatterea
species densities are much greater than the scatterea species densities 1in
regions aajacent to the firing engine. By separating out the important
scatterea portion, which would otherwise be dominated by the unscattered
portion, better statistics are obtainable on the desired quantities.

12.2 Contamination Cloud Results at 200 Kilometers

The presentation of quantities as a function of three spatial
dimensions is always somewhat difficult. The approach that has been taken
18 to show isodensity contours tor various planes. The coordinates defined
in Figure 8 are used, and emphasis is placed on the scattered species,
since they are the contamination source which 1is being accurately
represented in this calculation.
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Figure 9 shows isodensity contours tfor the scattered H2 molecules for
a plane perpendicular to the oncoming wind direction at the shuttle
location. The molecules are more numerous above the shuttle, as is to be
expected trom the airection of the firing, but a significant density has
made it beneath the shuttle. Figure 10 shows the same quantity for a plane
0.5 kilometers in front (upstream) of the shuttie. The contours have
spread out, indicating a more even distribution. FPigure 11 shows the
situation at 1.5 km upstream, where the scattered Ho density has become
essentially constant. The contours are ragged since small statistical
fiuctuations become very important in defining contour locations for a
nearly constant tunction.

Figures 12 anda 13 show isodensity contours of scattered Hy, and CO,,
respectively, for a plane at a constant Z location of 1 km above the
shuttle. In these figures the wind is approaching from the right. The
comparison of the two figures reveals more widely spaced contours for the
scattered H, than for the heavier CO,. These figures quantitatively
aemonstrate what could have been predicted qualitatively; namely, that Hy
is more effective at traveling upstream than the other two molecules. This
is partiaily because H, has a smaller cross section {and, therefore, a
greater mean free path) than the other molecules, but mainly because its
smaiier molecuiar weight results in greater molecular velocities. It makes
the most of the time it has between collisions. 7This point is made more
airectly in Figure 14, where the number densities of the three scattered
species are shown at a location of 1 km above the shuttle as a function of
the upstream coordinate. Within the statistical scatter, there 1is no
apparent aitterence in the upstream decay rate for Hy0  and CO,, but
retative to these molecules, H, gains approximately an order of magnitude
in aensity at an upstream distance of 2 kilometers. (At this distance it
1s probably comparable to the atmospheric concentration of H,, although no
atmospheric¢ H, was included in the calculation. The point that is being
made, however, is simply that light molecules are bectter at making it
upstream and then being blown back into the shuttle area.)

Some features of the velocity distribution function for scattered H,
moiecules is shown in Figures 15 and 16. Figure 15 displiays the mean
upward (Z) velocity component for the plane at X=0. This velocity is in
the ncighborhood ot 5 km/s at a distance of 2 km above the shuttle, but
becomes negative at the shuttle. The spread in the scattered H2 velocity
distribution is characterized by the translational temperature shown in
Figure 16. Near the shuttle the temperature is relatively iow (considering
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the 7 km/s shuttle velocity), with a minimum of approximately 2500 K,
increasing to values on the order of 6000 K about 1.5 km above the shuttle.
The railure of Figures 15 and 16 to show precise right-to-left symmetry is
aque to statistical scatter, and the degree of asymmetry gives an indication
of the error in the calculations.

Figures 17 and 18 show the same two (uantities for scattered CO,. [t
the rlow were in translational equilibrium, of counrse, the curves would be
laentical for scattered H, and scattered CO,. It can be seen that the
curves 100K very different, indicating substuntial translational
nonequilibrium. The Co, reaches a maximum Z velocity of approximately halft
that of the H,, and the maximum occurs nmuch closer to the shuttie. The
temperature for the scattered CO, 1s substantially larger than that of Hy,
however, reaching as high as 12,000 K. [t shouid be noted that the
transiational temperature is proportional to the molecular weight times the
square of the velocity fluctuation from the mean. Hence, although the CO,
has a higher translational temperature, it corresponds to a lower velocity
tluctuation due to the much heavier molecular weight for CO,. The
transiational temperature, rather than the velocity fluctuation, 1is
prescnted since this is the quantity that becomes identical betwcen species
in equilibrium.

The effect of molecular weight on the scatiered species properties in
the vicinity of the shuttle (at the origin) is illustrated in Figures 19 to
21. Figure 19 shows the normalized densities as a function of molecular
weight. The densities in this figure have been divided by the exhaust mole
fraction for each species, so the figure represents the tendency of the
molecuies to make it back to the shuttle vicinity, irrespective of their
initial prevalence. The figure shows that the tendency to get back to the
shuttie vicinity is essentially independent of species molecular weight.
This somewhat unexpected result is apparently due to the shuttle's
location. That is, the outer reaches of the scattered cloud are reiatively
highly populated in the more mobile H,. Since conservation applies, Hy is,
therefore, relatively depleted in the core region of the plume. In between
the two extremes, there are places where molecular weight does not have a
great effect on local dgensity, and the shuttle appears to be at such a
place. The same result was noted in the calculations for the other
altitudes and, it this trena hoids up, it may facilitate a method of making
quick estimates of contar ' ation due to atmospheric scattering. Since this
1s probabiy the most difficult portion of the contamination to calculate,
1L 18 a potentially significant result.
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Figure 20 shows thce vertical velocity component as a function of
molecular weight at the shuttle. Note that the zero on the scale is at the
top of the curve, with increasingly negative values corresponding to
downwara on the graph. IHence, there is a monotonic variation, with the
liphter molecules showing a much larger downward vertical velocity
component than the heavier molecules when they do make it back to the
shuttle. Finaily, the translational temperature is shown in Figure 21.
Again, it should be noted that the temperature at the shuttle increases for
increasing molecular weight, but that this correspondas to a decreasing mean
velocity fluctuation.

12.3 Surface Contamination at 200 Kilometers

Useful direct surface contamination statistics were not obtained for
this run. The reason is that the altitude was high enough that the
atmospheric mean free path was greater than shuttle dimensions, ana the
solution region haa to extend to many mean free paths to daescribe the
contaminant cioud. The resultant large cell size meant that molecular
wnreractions with the shuttle became sufficiently improbable that none of
signiticance occurreda. Essentially, the problem results from the
separation of the tength scales of the atmospheric mean free path ana the
shuttie dimensions. The problem is even more severe, of course, at the
higher aitituaes.

A modification to the code is planned whereby the present solution
will be calculatea and callea the "outer" solution. This solution will
then aefine inwarda fluxes of all species for an "inner" solution region,
which is just the smallest set of the outer solution cells which completely
contain the shuttle. With the boundary condition given by the outer
solution, the inner solution can then be run with a greatly reduced grid
spacing, and good statistics will be obtained for direct surface
contamination. The two spatial solutions can be combined to give a
resultant clioud soiution as well.

For the present problem, it is possible to exploit the separation of
length scales to obtain useful contaminant flux information. For a
Maxwellian velocity distribution, the one-way flux, f,, of molecules in any
airection, ;+. (that 1is, counting only those molecules which have a
positive velocity component in the specified direction) is given by:

t, = (n/(2va)l{{exp(-W3)]/~®" + W[1 + ert(W)]} (136)
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witere,

4 = m , (137)

W= wau, (138)
ana

L, = ue1, . (139)

In thesc reratioms, u is the mean species flow velocity, m 1s its
moiecular weight, 1 is its number density, and T is 1its translational
temperature. Although the actual species velocity distributions are
ciearly non-Maxwellian, the representation should be quite accurate for the
present case since the first three moments of the actual distribution
function, with no assumption ot equilibrium, are used to determine n, u and
T.

The resulting fluxes *or the three molecules are shown In Figures 22
througn 24 for the Y-Z plane. For scattered Hy, the tlux reaches a maximum
on the top of about 1.2x101% molecuies/cm®/s, which, it it were to stick,
would correspond to approximately a monoiayer in about half a secona. Of
course, Hz woula not be expected to slick, but water would, ana the water
return fiux 1Is 70% as high on the upper surtace. The potential for
contaminiation via scattered H,0 would seem to be substantial ftor this
cxample, ana CU, may also be a problem although the maximum flux is
approximately a factor ot eieven less than for the H,0.

There 1s a sjighc asymmetry in the tlux curves, which is more apparent
for the scatterea 002 than the others. This asymmetry is due to the
inciusion of the calculated Y velocity component in the flux expression.
From symmetry, it is known that therc would be a zero Y velocity component
tor ail spcecies at the origin; and any calculated value is, theretore,
ngicative of the statistical error. Although using a zero Y velocity
component rather than the calculated one is entirely ) -stified on physical
terms, jt is useful to include the calculated one precisciy becausce 11
gi1ves g measure ot the error in the calculation.
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Another feature of the flux curves which is noteworthy is that the
relative magnitudes of the maximum (upper surface) and minimum (lower
surface) fluxes varies significantly with molecular wecight. The heavier
species have a flux which is more dominated by the thermal or random
component of the velocity distribution function and less so by the mean
velocity or directed component. Due to this, the contaminant flux on the
lower surtace for scattered CO, is 63% of the upper surface flux, while for
scatterea Hy it is only 27% of the upper surface flux.

12.4 Resuits at 250 and 300 Kilometers

The flux curves for the 250 and 300 km altitudes are given in Figures
25 througn 30. The same general trends noted above are evident at the
higher altitudes as well, except that the level of the fluxes are reduced.
The most interesting result from the calculations at varying altitude is
the scaling of the scattered fluxes. At high enough altitude, in the free
molecular flow regime, the return flux will be due to single collisions
between the exhaust species and an essentially undisturbed atmosphere. In
this 1'low regime, therefore, the return flux would be expected to simply be
proportional to the ambient number density. As the altitude becomes lower,
however, a portion of the flux will be due to exhaust species which have
experienced muitiple collisions with atmospheric species. The return flux
in a multiple collision regime would be expected to exhibit a nonlinear
behavior and show a stronger dependence on ambient number density.

Figure 31 shows the maximum returned fluxes in the Y-Z plane as a
function of ambient number density for each of the three species. Also
shown in the figure is a dashed line showing the slope that would result
from a linear dependence of return flux on ambient number density. The
figure makes it clear that multiple collisions are quite important at 200
km {(the highest ambient number density), since the decline in the maximum
return flux is much greater than linear with ambient density when going to
250 km. The variation between 250 and 300 km is nearer the linear slope,
though still somewhat steeper, indicating that multiple collisions still
play a role at the 250 km altitude. One can speculate from the figure that
if runs had been made for higher altitudes (i.e., lower densities) that the
tfree molecular limit would be realized at 300 km and above, but this cannot
be proven 1n the absence of such runs.
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SCATTERED H, FLUX ON SHUTTLE
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Figure 25. The Return Flux of Scattered H, in the Y-Z Plane as a
Function of Azimuthal Angle, in the Vicinity of the
Shuttle, for the 250 Km Case.
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SCATTERED H-0 FLUX ON SHUTTLE
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Figure 26. The Return Filux of Scattered H,0 in the Y-Z Plane as a
Function of Azimuthal Angle, in the Vicinity of the
Shuttie, for the 250 Km Case.
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Figure 27. The Return Flux of Scattered CO, in the Y-Z Plane as a
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Shuttle, for the 250 Km Case.
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Figure 28. The Return Flux ot Scattered H, in the Y-Z Plane as a
Function of Azimuthal Angle, in the Vicinity of the
Shuttle, for the 300 Km Case.
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Figure 29.

The Return Flux of Scattered Hao in the Y-Z Plane as a
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Shuttle, for the 300 Km Case.
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SCATTERED CO, FLUX ON SHUTTLE
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Figure 30. The Return Flux of Scattered CO, in the Y-Z Plane as a
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Shuttie, for the 300 Km Case.
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AMBIENT DENSITY EFFECT ON MAXIMUM FLUX
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3. CONCLUSIONS

e oresent version of the SOCRATES coue snouid be regurded as the
TICSUL step 1noan ongolnyg aeveloprient project. [t doues not yet have moaules
tor many o! the contaminant sources discussed in the introaguction, but it
wits aesignea 'noa moaular fasnion so the inclusion of such additional
sources witl be & stralgntforwara task. The mogel does aescribe what is
prooazoly (ne most aifficuict portion of the contamination prodlem: the
svatrering ot shuitle plume molecules via the atmosphere. 1t presents a
sollg foukazlion for the aadition of new sources to the model, which is

Arready unaerway.

The sample calcuilations presenteda here provide important insight into
the rote of molecutar weight on the renaency of molecules to get scattered
piack to the shuttle and the leve) o!f fluxes to expect from such scattering.
it 1s hopeda that these calculations. and others to tollow, will atlow the
aevetopment of simpiitied approximate expressions winich will facilitate the
estimation of contamination for general molecules and altituaes. Such
estimates have a substantial place in initial experiment design. More
comprete catculations, of course, will always be aesirable for experiment

preqretilon and daia analysis.
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APPENDIX A. CHI-SQUARE PROBABILITY DISTRIBUTION

A.1 Physical Basis

Funaamentally, the chi-square function represents the distribution of
energy in an equilibrium classical system with v degrees of freedom. It is
a wetl known crassical result that each degree of freedom for a molecule in
an equiiibrium gas wiil have, on the average, an energy of kT/2, where k is
Soltzmann's constunt and T is temperature. (For example, the translationai
moae, wirih three degrees of frecdom, has an average energy of 3kT/2 per
motecule. The aistribution of <translational energy among the various
moiecutes tollows a chi-square distribution with 3 degrees of ftreedom.)
ulner modes of energy (molecular rotation and vibration) have their own
characteristic number ot degrecs of treedom, which may or may not be fully
exciied in the energy range of interest. If a mode is not tully exciteaq,
that simply means that it is behaving as it it had a non-integer number ot
agegrees of ftreeuom within the classical approximation. The numuver ol
rmernal aegrees of treedom is airectly related to the neat capacity ot the
pgas anu, essentially, v is selected to match the known heat capacity of a
girven morecule 1noa given energy range. The assumption of a constant
numoer o! aegrees ot freeaqom is, therefore, equivalent to the assumption of
a conscant heat capacity. A alscussion of the implementation of such a
moael al:owing for a rinite rate relaxation towards equilibrium between
Transldaiional ana internal modes 1s given in Reference A-1.

A.2 Definition and Matnematical PropertiesA—2

The chi-square probability aensity function, f(X;v), detines a

aistribution ot X in a domain ot zero to infinity via

¥(v/2 = 1)oxn(-x/2)

t(X;v) = . (A-1)
2(V/2)p(y/2)

A=t ““Elgln, J. B., "Getting the Good Bounce: Techniques tfor Efficient
Yonte Carto Analysis ot Complex Reacting flows,” Report SSI-TK-28,
Spectrai Sciences, inc., Burlington, MA (1983).

A-2. Aoramowitz, M. ana Stegun, [. A., Handbook of Mathematical

Functions, Nationar Bureau ot Stanaards, 940 (1968} .

A-1




where v 1s a positive parameter ot the distribution referred to as the
numper of degrees of treedom. The chi-square distribution resuilts in i
mean valuc ot X equal to ». Figure A-1 is a plot of the chi-square
propability density funct:on tor v equal to 1, 2, and 3.

Thne chi-square distribution has a fundamental addition property such
thac tf Xy s serectea from a chi-square gagistribution with v, aegrees of
frecaom, ang X, is selected from a chi-square distribution with v, aegrees
ot treeaom, then their sum will be adistributed according to a chi-square
aistribution with v,+v, aegrees of freedom. This property is of
substantial theoretical andg practical importance.

Iy the variable Z is distributea accoraing to & normai aistribution
w1tlit zero mean and unit variance, then 22 will follow a chi-square

gistribution with one aegree of freedom. It follows fram the dbove
aaaition property that, in general, if q, Zz, c. » L, are n variables
it
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Figure A-1. A Plot ot the Chi-Square Probability Density Function
tor v Equatl to 1, 2, ana 3.




sefectea from a such a normal distribution, and X is defined as the sum of
the squares of the 2Z;, then the X's that result will be distributed
according to a chi-square distribution with n degrees ot freedom.

Finally, 11f t 1is distributed according to a probability density
tuncuion g{t;p,q)., where

19711 - ¢)4-l

(D, , -
¥ p,q) 5(p.q) (A-2)
aia
1
“
Kip.q) = §tP" 1y - )14t Lp)(q) ) (A-3)
J C(p + q)
0
(B is the Beta function) then t can be sampled via
.« (a-a)
X, v X3

where X; 1is selected from a chi-square distributijon with v, degrees of
freeaom, and X, is sclected from a chi-square distribution with vy degrees
of treedom, with

vl = 2!) , (A's)
ana
v, = 2¢ . (A-6)

The significance of Eq. (A-4) is that it reduces the sampling from a two-
parameter aistribution (Eq. (A-2)) to two samplings from a one-parameter
aistripution. The aqaistribution represented by Eq. (A-2) arises in cases
wnere d constrained amount of total energy is distributed among various
mones, dnd its relation to the chi-~square distribution apparently has not
been appreciated by developers of techniques for Monte Carlo fluid
mecnanics.




A.3 Sampiing From a Chi-Sguare Distribution

The neea tor sampliing ftrom a chi-square distribution comes up witen
sampring inttiat vaiues o!f internal energies, when calculating inelastic
- collisions via the statisctical cotlision modelA"3 or when caiculating the
equliibrium attermath ot many collisions in 4 cell. Since these operations
must be pertformea repeatealy in the heart ot a Monte Carlo simulation, it
- 1s imporudant that the sampling be done ettficientiy and accurately.

ror ciarity, the resultt of each sampling methoa discussed below will
pe aenotea by a different letter subscript to X. A}l sampling procedures
make use ol a random number generator which returns a number, R, sclected
trom a probability density which is uniform on the interval between zero
gana one. Each occurrence of R indicates a distinct sampling from the
ranadom number generator.

A.3.1 Analytic Sampling for Integer v

- Direct sampliing of Eq. (A-1) can be performed for integer v, as shown
pelow.

A.3.1.1 v =2

As v (an intrinsically non-negative quantity) approaches zeru, the
aistribution function approaches a dcita function, and a proper sampling is
achieved by simply selecting

X, = 0 . (A-T)

For sampiing with v = 1 (as well as for several other cases), it is
convenient to introduce the transformation Z2 = X. Z is then distributed
according to the probability aensity function p(Z) given by

A-3. Borgnakke, C. and Larsen, P. S., "Statistical Collision Model for
Monte Cario Simulation of Polyatomic Gas Mixture," Journal of
Computationa! Physics, 18, 405 (1975).




2V oxp(-22/2)

; (A-8
2(v/2 - 1)py/z) )

plZ) =

For v = 1, tnis alstribution is simply a normal distribution adjusted to
alijow for positive only argument. Sampling from this distribution is
acscribea in Retference A-4. When the result is cast back in terms of X,
the result is

A = 2%R (A-9)
ana

Xp = -2log(R)sin?(a) . (A-10)

A.3.1.3 v =2

Wnen v = 2, the integrat of Eq. (A-1) can be analytically inverted,
teadinyg to the direct samptiing

X = -2log(R) . (A-11)

A.3.1.4 v Equa! to an Even Integer

The extreme simplicity ot the above sampling for v = 2, together with
the aaditron property of the chi-square distribution, means that sampling
tor v equal to an even integer is quite direct. Let J = v/2, then a proper
chi-square sampliing is given by

where R, througn R; denote J samplings from the random number generator.
The fact that the log need only be taken once in Eq. (A-12) means thatl the
cviiuation of X, is quite etficient, even tor moderately large v.

A-4. Bird, G. A., Molecular Gas Dynamics, Clarendon Press, Oxtford
(1976) .




A.3.1.5 v Equal to an oqad integer

For v eyual to an odd integer, the aadition property of the chi-square
airstribution allows the simpie combination ot the resuits for v equal to
one anu vV equal! to an even integer, i.e.,

X(’) = Xb + Xd . (A—13)

where X, is given in Eq. (A-10) ana Xq 1is given in Eq. (A-12) with J =
(v-1})/2.

A.3.2 Generatizea Acceptance-Rejection Sampling

For non-integer v, 1t 1s necessiary (o use a generalizea torm of
acceprance-rejection sampling. Betfore the application to chi-square
sampling 1S presenteaq, the acceptance-rejection technique ana its
generalization will be briefly aiscussed.

A.3.2.1 Stanaarc Acceptance-Rejection Sampling

The usual acceptance-rejection technique tor sampling from a general
aistribution function, p(x), proceeds as tollows:

1) The aomain ot X 1s approximatea, 1Iif necessary, by a [finite
sub-aomain.

2) The maximum value of p(x), p*, is calculated.
3) A variable € is selected from the domzin of X via

€ = Xpin * R{Xpax = Xpin)

4) p(ﬁ)/p* is calculated, and another random variable, R, 1is
generatea. x is set equal to € if R is less than p(§)/p

5) Steps 3 ana 4 are repeated until a vaiue of X is determined.

Note that the probability of acceptance of the random variable in step 4 is
proportional to the distribution function being sampled, so the resulting x
values will follow the desired distribution function.




Although the generality of this approach makes it very powerful, it
aoes sulfer from the following drawbacks:

. [t the aqistribution function differs signitficantly from its
maxXimum value within a substantial portion of the sampled domain,
then the rejection rate may be high. This obviously leads to a
s:ow sampling procedure.

° it the tinite sub-domain is reduced to increase the acceptance
rate, then the sampiing daeviates ftrom the true distribution

function.

] i bproceaure 1s incapable ot sampling from an unbounded
aistribution function.

A.3.2.2 Generaiization of the Acceptance-Rejection Technique

Tne following procedure comprises 4 generalization of the acceptance-

rejecltlion tecnnique:

1) A second aistribution tunction, q(x), which can be sampled

analytically is chosen. Conaitions on q(x) wiil be discussed
beLow.
2) The maximum value of p(x)/q(x), (p/q)*. is calculated.

3) A variable, €, is sampled from (.

4) Q = lD(E)/Q(ﬁ)]/(p/q)* is calculated, and another ranaom
var:able, R, is generated. x is set equai to € if R is less than
Q.

5) Steps 4 ana 4 are repeated untjil a value of X is determin~d.

it snould be noted that the probability density for a given value of x
1s proportionar to the proauct of the initial selection probability times
tne acceprance proobapriity.  Since the tormer prooability is proportional
to (q(x), ana the latter i1s proportional to p(x)/q(x), the distribution of
sccepted values does inaeed follow the distribution ftunction p(x).

Tne usual acceptance-rejection technique is simply the case where q(x)
1s constant, but it is evident that this is not always the best (or cven a
possinie} choice. All ot the oojections to the standard acceptance-
rejecllon tecnnique can be removedy or ameliordatea by a suitable choice tor
qtx). fn parcticular:




° There 1s no neea to approximate the domain of x with a ftinite
sub-domain. [t is merely necessary that the domain for q include
the domain for p. The domain for q can be larger than that for p,
since whenever a value 1is selected from outside the domain for p
it will always be rejected in stup 4 above.

] If q is selected to be close to p, at least in the region of
highest probability, then the acccptance rate of trial values will
be large.

] Unbounded distribution functions can be sampled if q is chosen to
have the same type of singularity as p, since the only requirement
is that the ratio (p/q) remain bounded.

For any given situation, the choice ot the function q is a bit of an
art, guided by the concerns highlighted above: q must have a domain which
inciudacs the domain of p: p/q must remain bounded; and (p/q) should achieve
its maximum in the vicinity of the maximum of p.

A.3.3 Exact Acceptance-Rejection Sampling for a
Chi-Square Distribution with Large v

The acceptance-rejection technique described above can be used to
achieve an exact sampling from a chi-square distribution for large V.
{Actually, the approach is pertectly valid tor all v > 1, but the method to
be described in Subsection A.3.5 is to be preferrea for v < 45, or so.)
The proceaure utilizes the transformed chi-square distribution, p(2), given
by Eq. {(A-8) as the distribution to be sampled. A normal distribution is
used as the initial distribution which can be sampled analytically. The
normat distribution is chosen to have a unit variance and a mean which
corresponds to the location of the maximum of p(Z). This maximum occurs at
Z* given by

Z = v -1 . (A-14)

The functional form of the normal distribution, (Z), is

q{Z) = exp[-%(Z—Z*)zl/wl'a'i , (A-15)




wnicn not only has a maximum at the same location as Eqg. (A-8), but has the
same  exponential factor as Z approaches intinity and a domain which
tnciuges that or Eg. (A-8). The sampiing of a chi-square value proceeds as

ToLLOWS:
1} A = 4V - 1 1s calculated.

2} A sample rrom the agistribution given by Eq. (A-15) is taken via:

a) A = 21R (A--16)
b) B = -iog(R) {A-17)
¢} Z = ¢° + ~2Bsin(A) (A-18)

3) The acceptance probability, @, is computed as
¢ = (z/z"yV - Vexpr-2z%(z - 2%)1 . (A-19)
(Q is taken to be zero for negative Z.)

4} Another random variable is generated, and Z is kept if Q > R. It 2

is rejectea, then steps 2 -~ 4 are repeated until a Z value is
accepted.
5} when a Z vaiue 1s accepted, then the corresponding chi-square

value 1is given by
X, = 2° . (A-20)

This procedqure is illustrated in Figurc A-2 which shows p{Z), q(Z) and Q(2)
tor v = 30. Note that the acceptance probability is near unity in the
vicinity of the maxima of the two distribution functions, so a large
traction of the selected samples of q(Z) will be accepted as samples of
olZ).

A.3.4 Exact Acceptance-Rejection Sampling for a Chi-Square
Distribution with (0 < v < 2).

for this domain of v it 1is convenient to introduce another
transtormation to Eq. (A-1). [t W is defined by
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W = exp(-X/2) , (A-21)

then the probability aensity function for W is given by h(W), where

S i-iegwyjlv/a - 1) e
n(w; = F(v72) . (A-22)

The aomain for W 1s tfinite (between 0 and 1), but h(W) becomes infinite as
W approacnes unity. The generalizea acceptance-rejection technique can
sl11: be usca, however, since the tunction g(W) given by

qw) = (v/z2)(1 - wylv/z - 1) (A-23)

nus the same Type of singujarity ana can be analytically sampied. The
cnr-syguare sampling tor (0 < v < 2) proceeas as tollows:

1 A sampie from (W) is generateda via

wo= 1 - gf2/vi (A-24)
2) The acceptance proonability, Q, is computeu from

Q = (W - 1)/ tog(w)]tT - V2l (A-25)

3) Another ranaom variable, R, is generated, and W is kept if Q@ > R;
otherwise steps 2 ana 3 are repeated until a value for W is
accepteaq.

4) When a vaiue for W is accepted, the corresponding chi-square value
1S fr1ven by

Xy = -2log(W) . (A-26)

This procedure is 1illustrated 1in Figure A-3, which shows the two
alstribuiion functions, h(W) and (W), and the acceptance probability,
(W), tor v = 1. [t can be seen that q(W) provides an excellent choice for
the 1nitial sclection of W, since the acceptance probability remains high
througnout tne important domain ot W. This point will be discusseda in more
aetial} 1n Sec. A.3.6.
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A.3.5 EXact Chi-Square Sampiing for Generai Vv

Using the tunadamental addition property ot chi-square distributions,
1T !s possible to combine the procedure described in Subsection A.3.1.4 for
v equial To an even ntegzr with the procedure describea in Subsection A.3.4
tor (0 < v < 2) to acnleve a exact general sgmpling technique for arbitrary

V. Inls 1S g1ven sinpiy by
Xp = Xq + Xpoo (A-27)
wihere X . 1S calcuiatea from Eq. (A-12) witn J equal to the integer portion

u
ol v/z, ana X, 1s calculatea as in the preceding section with v being

rentaced oy v-2J.

It 1s to be noted that both the approach given 1in this subsection
{Eq. (27)) and that given in Subsection A.3.3 (Eq. (A-20)) are exact and
apnpiicable tor v > 1. In general, the approach of this subsection 1s
consiacrably faster, although as v gets large the approach of Subsection
A.3.3 becomes more attractive. There are two potential difficulties with
Eq. (A-27) as Vv becomes very large. Firstly, the proauct required in
Eq. (A~-12) gets more ana more cumbersomec to compute as V increases and,
scconaly, the larger the number of factors in this product the greater is
tne chance tnat it wilitl yield a number so smail as to produce a floating
po:nt unaerfiow on a coarputer. (since Monte Carlo codes must be highly
recvranle, any such problem should be made essentially impossible.) It
turns out that the second problem is more restrictive (at least for 32-bit
compulers), adictating that the E£q. (20) should be used for v greater than
45 or so. This keeps the probability of an uncerflow below 10'10 on any

grven sampling.
A 3.6 Approximate Chi-Square Sampliing for (0 < v < 2)

Tne proceaure described in the preceding section is quite efficient,
nui U !s nonetheless usetul to consider approximate methods for sampling
trom cn!-square aistributions. While 1t would be scarcely possible to
1mprove on sampiing for even integer vV aiscussed 1t Subseciion A.3.1.4, it
15 reasonable to i1nvestigate approximations tor the (0 < v < 2) portion
arscussed  1n Subsection A.3.4. A likely place to look ftor useful
approximations in this procedurce is in the calculation ot @ (Eq. (A-25)),




(Note that the

wnicn must be pertormed for every W selected in Eq. (A~24).
carcusatlon or Q invoives mure computational effort than rhe calcuiation or

W.)

The overatll probability that the vaiue chosen i1n Eq. (A-24) wii: be
Xepl as a sample ol Eg. (A-22) is given by P, where

¥ -

{A-28)

P = q(W)Q(W)aw = T(1 + v/2)

!
J
0
Hence, as v approaches 0 or 2, all initially selected values of W are kept

as valia samples ot Eq. (A-22), and the computation of Q serves nu usectul
In the worst case (v = 0.92) the overall acceptance probability

purposec.
1s 89%, and only 11% of the initially selected variables are rejected. The
approximate chi-square sampling involves approximating Q(W) by an easily
catcutabie function which differs littie from Eq. (A-25}). The current
approximation tis Qa(W), given by

QW) = 1~ (1 - v/2)(1 - W(.5 + a(v)(1 - W3] (A-29)
wiere

a(v}] = .2511v + .2073 (A-30)}

Q, was selected to match the value ana slope of Q at W = 1, wihich is the
is a linear

regrion of nighest probability aensity. The coefticient a(v)
f1T to vaiues chosen to be optimal in the least squares
v = 1.0 1s shown 1in Figure A-4, which

sense. A

comparison ot @ ana Qa tor
aemonstirates the suostantial accuracy ot the approximation.

It 1s luhuamentally more important, ot course, to compare the correct
cni-syuare distribution with the distribution which is effectively being

samplea 1n the approximate technique. If h,(W) is the approximation analog

o h{W), then ha(w) is proportional to the product q(W)Q{W), i.e.,

hy (W) = A(1-w)(V/2 - g W) (A-31)

where the normaiization factor, A, is determined by requiring that ha(W)

glve unity when integrated between zero and one. This results in




2 . . .
i v : 2v + 8 za(v{ ' (A-32)
A 2ve + qv Vb

Once na(W) is detfined. the corresponding distribution function for X,
t,(X;v) 1is obtained by multiplying h,(W) by the magnituae of dW/dX (= W/2),
ana substituting W = exp(-X/2}. The comparison between f(X;1.0) and
r,(X;1.0) is given in Figure A-5, ana the agreement is excellent. The use
of the approximate technique is approximately 40% faster than the exact
acceptuance-rejection technique, and the ditfference in the distributions
nelng sampled will probably always be negligible. Although the ability to
sampte trom an exact chi-square aistribution will be kept as an option, 1t
1s feilt that the approximate technique oftfers a substantial time savings
tor an 1nconsequentlal loss of accuracy.




2.2

ACCEPTANCE PROBABILITY

.2

| —— EXACT. QW) (Cg. A-25) |
- APPROXIMATE., Qy (W) (Eq. A-29)
- —
[ -
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SAMPLED VARIABLE. W=EXP (-X/2)

Figure A-4.

A Comparison of the Exact and Approximate Acceptance

Probabilities for v=1.
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Fipure A-5. A Comparison of the Exact Chi-Square Distribution,

t(X;v) with the Approximate Distribution, fa(x;v) which
is Effectively Being Sampled by the Approximate
Technique Presenteda in Subsection A.3.6. vV was taken
to be unity tor the comparison.
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